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ABSTRACT

An important aspect of fishery management concerns the

relationship between samples of the fish population, the true

state of the population, and management prerogatives. This rela-

tionship is particularly important to the brown shrimp  Penaeus

aztecus! fishery of Pamlico Sound, North Carolina, These shrimp

have an annual life cycle that begins in the early spring with

migrations as postlarvae from the ocean to the upper reaches of

the Pamlico Sound estuaries, In these estuarine nursery

grounds they grow to the juvenile stage and with growth migrate

toward the ocean. In an effort to assess the size of the com-

mercial population and to help with management decisions, marine

biologists sample the length and abundance of the juvenile estu-

arine population. One important management decision that is

based. on these data is the time at which to open the commercial

shrimping season.

This technical report describes a component of a methodol-

ogy, based on computer simulation sampling, for the analysis of

fishery management decisions of this type. It is the third in a

series of five reports that describe the method.ology, It dis-

cusses modeling the early part of the shrimp life cycle and in

particular presents �! a model of pastlarvae shrimp recruitment
to the estuaries of Pamlico Sound, �! a model of juvenile migra-

tion from the estuaries, and �! a model of estuarine shrimp

abundance. Each of these models accounts for mean behavior and

for random variation that is a significant element of the



biological processes. The models also account for autocorrelation

in estuarine abundance levels and for interestuarine correlation,

which is shown to contribute significantly to variation in

recruitment times and abundance levels.

The techniques for estimation of model parameters are given

and are demonstrated with data from sampling of 54 nurseries

over four years in Pamlico Sound. Furthermore, to demonstrate

the simulation methodology, the report describes algorithms that

model the spring sampling of the juvenile population. The report

also shows statistics on length and abundance evaluated from

computer sampling according to those algorithms.
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Introduction

Commercial fisheries often take advantage of the seasonal

migration of a fish population, The brown shrimp fishery of

Pamlico Sound offers a good example. As part of their life cycle,

these shrimp migrate to the upper estuaries in the early spring

 recruit to the primary nursery areas! and migrate from the nur-

series to the transport or fishable areas during the late spring

and summer  recruit to the secondary nurseries and transport areas!.

The local fishing industry adjusts its effort to coincide with mi-

grations to the fishable areas . Consequently, effective manage-

ment of the fish stock, typically involving some form of constraint

on fishing effort, requires a comprehensive understanding of the

relationship between these migration patterns and harvesting ef-

fort. As part of a larger study to develop methodologies for eval-

uating fishery management policies, this report addresses modeling

in-migration to the nursery areas and out-migration from those

areas to the fishable areas.

For each estuary in-migration is characterized by an arrival

time and an abundance level. Each exhibits seasonal variation with

an annual period and also shows within-year random behavior, More-

over, between-year random variation in arrival times and abundance

levels can be substantial. These random components account for en-

vironmental and. meteorological variation which affect the popula-

tion and therefore the harvest. Consequently, they are important

when modeling in-migration for management policy analysis. The de-

pendence between estuaries is also an important consideration, For

example, early  late! arrivals in one estuary increases the



likelihood of early  late! arrivals in other nearby estuaries.

This association and a similar interestuarine relationship for

abundance levels are essential parts of the in-migration process

and consequently are essential to a comprehensive characteriza-

tion.

Out-migration also exhibits seasonal variation and random

fluctuations associated with within-year and between-year varia-

tion. Ne characterize it using a variant of diffusion migration

models discussed by Beverton and Holt �9S7!, Seber �973!, and

Ricker �97'!. However, our approach differs from theirs in em-

phasis and application, Rather than focusing on a descriptive
analysis of out-migration we concentrate on a stochastic represen-

tation that as part of a simulation fishery model accounts for

autocorrelation in estuarine abundance levels.
We use the stochastic approach in modeling both in-migration

and out-migration. It enables one to sample the yearly arrival

times and. abundance levels in the estuaries and then to simulate

the fishery under those nursery conditions, We call such a sample

population an initial population profile, By including the sto-

chastic elements of migration in a larger fishery model one can

assess alternative management policies for naturally occurring en-

vironmental conditions, For example, with this approach one may

learn that a specific management strategy performs particularly

well when abundance levels are low or when arrival times are

early, With this knowledge management would be alerted to the pre-
ferred strategy in a low abundance or early arrival year.

In particular, the report:

�! Presents a mod.el of in-migration to the primary nurseries.



�! Presents a model of out-migration to the fishable

 transport! areas.

�! Presents a model of population abundance levels.

�! Estimates the parameters of these models using data col-

lected on the Pamlico Sound brown shrimp from 1974 to

1977 by the Division of Marine Fisheries of the

Department of Natural Resources and Community

Development, the State of North Carolina.

�! Presents a procedure for sampling yearly initial popu-

lation profiles from a computer representation of the

migration and abundance models.

�! Presents a procedure for computer sampling that models

the marine biologists' sa~pling of the juvenile estu-

arine population. The report also shows graphic re-

sults from such a simulation.

This report. is the third in a series of five reports, describ-

ing the submodels which are the building blocks of a methodology

for management policy evaluation, The first report, Cohen and

Fishman �980!, concentrates on modeling growth and the weight-

length relationship. The second report, Cohen and Fishman �982!,

addresses the biomass-revenue and the mesh-weight relationships.

The next report will focus on the relationship between catch bio-

mass and fishing effort. Each of these papers supplies the details

of an additional component of the fishery simulation model. The

final report will demonstrate the usefulness and versatility of

the methodology by exhibiting the results of' a sequence of experi-

ments performed with the model for the goal of evaluating a set of



management s trategies

l. Biology of the Brown Shrimp of Pamlico Sound

The brown shrimp has an annual life cycle. The adults spawn

offshore in open water in early spring and the young  postlarvae!

migrate through the inlets into Pamlico Sound in February, March

and April  Williams 1964}. The postlarvae seek the low salinity,

soft muddy regions of the upper estuaries  called primary nur-

series} as growing grounds  Williams 1958! . The mechanisms by

which the postlarvae enter the inlets and traverse the sound are

unknown, However, there is evidence that copious migrat.ions occur

during flood tides  Williams 1964, 1969! and on new moons  Williams

1964, Williams and Deubler 1968!. This suggests that in addition

to the annual periodic component a monthly or biweekly component

may contribute to the time of peak recruitment.

Within the nursery environment the postlarvae grow to the

juvenile s tage in four to six weeks  Perez Farfante 1969! . As the

juveniles mature they migrate downstream to the lower estuaries

 secondary nurseries and transport areas! toward the higher salin-

ity deeper water of the Pamlico Sound  Williams 1955!. Migrations

continue through summer until the population has migrated from the

upper estuaries, to the sound, and finally to the open ocean to

spawn, thus repeating the cycle  McCoy 1968!. There is no evi-

dence to correlate the between-year abundance levels or between-

year harvest sizes  Hunt 1979!. However, tagging studies have

shown that shrimp within the sound migrate to the south and out of

the nearest inlet, and once in the open ocean they continue their



southern migration  McCoy 1968, McCoy 1972, McCoy and Brown 1967! .

Many of the nurseries in the western Pamlico Sound, from Adams

Creek in the south to Stumpy Point Bay in the north, produce shrimp

in commercial quantities, To protect the young shrimp and other

maturing species, policy has been to prohibit fishing in the prim-

ary nursery grounds throughout the year  Shrimp Management Policy,

1978!. Hence, brown shrimp are harvested outside the primary nur-

sery areas, principally within the secondary nurseries, the trans-

port areas, and the Pamlico Sound. Fishing commences with the

opening of the shrimping season by the Division of Marine

Fisheries. The commercial fishermen are eager to harvest in the

secondary nurseries and transport areas to ensure that commercial

sized shrimp neither escape to the ocean nor are captured by com-

peting fishermen.

2. Descri tion of Data

In an effort to associate the arrival times and abundance

levels in the nursery areas with an opening date for the fishing

season the Division of Marine Fisheries of the North Carolina

Department of Natural Resources and Community Development regul-

arly samples the nursery grounds of Pamlico Sound. The marine

biologists of the division have fixed sampling locations, choosing

several sites in each major estuarine system. Typically, samples

are taken with a 4 inch mesh trawl net under tow from 30 seconds

to several minutes. The specific times depend upon the observed

abundance level; long tows in low abundance situations.

For each tow, data consist. of the frequency of observations
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in each of 14 length categories listed in Table 1, Each category

is identified by the midpoint of the 10 mm interval defining its

limits. Data so organized are easily representable in histogram

form as well as suiting other needs of the marine biologists,

The data made available to us by the division were sampled

once a month in the late spring to early summer from 1974 to 1977

in two regions, one north of the Pamlico River  northern estuaries!,

extending from Abel Bay to Stumpy Point Bay, and the other south

of the Pamlico River  southern estuaries!, extending from Adams

Creek to Spring Creek. The 54 estuaries in the data were all

identified as primary nurseries with the help of the marine biol-

ogists of the Division of Marine Fisheries. Table 2 names each

one and lists the code assigned to it by the division. The table

also lists an index i which identifies each of the sample sites in

the development that follows,

The reader should note that data were collected to provide

information about the pre-season state of the commercial shrimp

population, not to model the migration processes, Accordingly,

the models we consider have been restricted in scope to accommodate

the limitations of the data.

3. Mi ration Models

This section presents models of in.-migration and out-migration

separately, concentrating on time of migration and parameter esti-

mation.
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Three factors dominate the time of in-migration; 1! seasonal

variation, 2! random variation, and 3! interestuarine dependence.

Although the annual period of in-migration is its most apparent

cyclical feature another structural component, observed by biol-

ogists, is discernible in the data, This component associates

peak recruitment time  time of in-migration or arrival time to

the primary nurseries! with flood tides, Compounding the effects

of this component are random within-year and between-year varia-

tions whose numerous causes include estuarine salinity levels,

river currents, wind currents and water temperature. However, no

unequivocal structural model relating these causes and variational

effects has been developed up to now. In fact, the mechanisms in-

volved are largely a matter for conjecture.

Because of this gap in our understanding and the absence of

field experiments for quantifying the relationship between these

environmental factors and recruitment time we propose a simple

stochastic characterization that results partly from a preliminary

analysis of the data and partly from known qualitative features of

in-migration,

If one could observe recruitment times directly, patterns in

the data would suggest appropriate models of in-migrations. Un-

fortunately, these data are not available. However, one alterna-

tive is to estimate a recruitment time for each sampled shrimp

then peruse these estimates for patterns. This is a feasible ap-

proach since the approximate length of each sampled shrimp is



recorded in the data, and a model of shrimp growth can be used to

estimate shrimp age. If one assumes that substantive growth begins

after recruitment, this estimate and the known time of sampling

yield an estimate of recruitment time. Section 3,2 describes the

development of this estimation procedure.

The resulting analysis suggests the existence of at least two

major recruitment periods or waves. For the northern sampling

sites Table 3 shows estimates of the probability of recruitment in

each spring week for the four year data. Since recruitment time is

measured in weeks the probabilities define a probabi1ity mass func-

tion. This function assigns to each week the probability that a

shrimp arrives in that week. For each site the modes or peaks of

the mass function are identified by outlined rectangles, One

sees that many of the estuaries have two modes whose peaks have

considerable magnitude, with their sum often exceeding .70. This

supports the contention that in-migration is composed of two re-

cruitment waves, Furthermore, for the northern nurseries the

time between recruitment waves  inter-recruitment wave period! is

less than five weeks, a yeriod shorter than that over which the

data were collected.

This observed multi-wave recruitment. is evidence of the rela-

tionship between recruitment and tides which has been noted in the

past  Williams 1964, 1969!. In particular, inter-recruitment wave

periods on the order of a month parallel the long period. components

of the tidal forces. These components have fortnightly, monthly

and semi-monthly periods, which result in tide height differences

of over a foot in some estuaries  Giese, Wilder and Parker 1979,
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pp. 7-9! .

The data also show a year in which recruitment occurs

predominantly in one wave. Considerable recruitment in week Zl of

1976 indicates the favorable conditions during that period, and

the consistency across estuaries shows the associative behavior

among them.

The reader may also observe that these recruitment times are

later than those noted by biologists  Williams 1955a, Williams

1955b, Williams 1964!, This results from using in estimation a

model of shrimp growth that does not account for slow growth in

cold estuarine water in the spring. Consequently, the estimation

process consistently underestimates fish age. This however, is

no drawback when modeling the fishery for management policy analy-

sis, since by also using this growth model in the fishery simula-

tion model one obtains an accurate profile of the nursery popula-

tion in mid-spring. This is important since mid-spring is when

marine biologists sample the nursery for fishery management pur-

poses. We demonstrate the ability of the simulation model to rep-

licate nursery conditions in a nursery sampling experiment dis-

cussed in Section 5.3.

In view of these observations we characterize recruitment to
1

the primary nurseries by at most two waves. Let <- denote the1

2time of the first wave and <- the time of the second wave for site

i. These quantities are integer valued random variables taking

values between 1 and 52. They are related by



v ith equality holding in the case of a single recruitment wave. We

so that
j. 1

equivalent to know-

denote the time between recruitment waves by

Consequently, knowing x- and ATi is2 1

1
7

1 2ing r. and
1 1

The distribution of peak recruitment times is also important,

and a complete characterization of it includes provisions for the

relationship among recruitment waves in the different estuaries,

as well as the dependence between the first wave and the length of

the period between waves, A characterization of the joint distri-

bution of the vector  <.,ATi : i = 1,...,54! accomplishes these1

goals. Furthermore, this multidimensional distribution fulfills

the requirements of the simulation model for management strategy

evaluation.

3.2 Estimating the Parameters of In-migration

Ideally, one estimates the joint distribution of the vector

 ri,hTi ; i = 1,...,54! from a sample of the recruitment times.1

Since four years of data are too limited to support this extensive

restrict the estimation to: 1! the vector of meansan endeavor, we

 E~. : i = 1,...
1

j.
,54!, where Er. is the expected time of the first1

1

recruitment wave in estuary i, 2! the covariance matrix z, whereT'

the entry in row i and column j is the covariance between the first

recruitment wave in estuaries i and j, and 3! the probability mass

functions of the time between recruitment waves. In section 5.1

we return to the problem of identifying the joint distribution.
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Eat~mak~»g the. ii/za» Pe.clot a».cf Cavacia»ce. 'faXcix a  Re.ccats,trna.»t
Tzm e.,

Here we complete the details of the procedure for estimating

the probability mass function of recruitment times as outlined in

Section 3.1. In particular, we show how the mean vector  ET'1
i = 1,...,54! and. the covariance matrix Z are estimated.

As the procedure requires a characterization af shrimp growth

we use the growth in length model described in Cohen and Fishman

�980!. This model asserts that the length L of a At week old

fish has probability density function

R-pL  At, s!
2

gLR ~ At! = 7
s=l

�.1!
oL At,s!

where

2

y x! = e
-x /2

MZvr

is the standard normal density function, > is the probabilityI' s

that a shrimp has sex s  s=l for female and s=2 for male!, and

uL At,s! and aL' At,s! are, respectively the mean and variance
of L. Further description of these parameters is in Cohen and

Fishman �980! .

Consider a shrimp with length L= X at time t, and let T de-
0

note the time it arrives at a primary nursery. Since we assume

that shrimp growth begins at time of recruitment the shrimp is

AT = t - T weeks old. Although one cannot observe T directly
0 0

it is possible to estimate it. One way is to estimate age At

and then use the relation T = t - AT . We follow this approach,
0
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and estimate AT as the age most likely for a shrimp with length R.

Then the estimate t of T is the quantity that satisfies
0

P
g R ~ t-t ! max g R ~ t-x! . �. 2!

0<x<t

In practice a t is found for each sampled shrimp. The col-
0

lection is then grouped by estuary and year since this partition

is needed for estimating  Er.: i = 1, ..., 54! and 7
1

1

For sampling site i, in a given year let

number of samples

number of shrimp in the jth sample

time of the jth sample

length category of the kth fish in the j th

sample

recruitment time of the kth fish in the jth

sample.

n..
lg

t i, j!

ijk

We estimate t  i, j,k! by solving �.2! for t when0 0 ijk

and t = t i, j! and denote this estimate by t  i, j,k! . To expedite
0

computation, a two step procedure is employed. The first step,

n, A denotes this length. The age estimate for a fish with this
n

P

length is denoted by ht A !, and it satisfies
n

g K Iht A !! = max g X Ix! .
0<x<52

�. 3!

This approach limits computation since for each i, j and k,

for some 1<n<14, so that
ijk n

 i ~ j ik! = t i j! xgk � 4!

described by Algorithm EA in Appendix B, finds an age estimate for

a fish having the length of each length category. For category
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Therefore, regardless of the number of observations one solves

only 14 maximization problems. A more direct approach would re-
quire the solution of the maximization in {3.2! for each observa-

tion. Furthermore, since our intent is to restrict recruitment

time to integer values, At k ! can be evaluated using a search

procedure on an appropriately sized grid. Algorithm EA describes
one such procedure. With the estimates {At{A ! : n = 1,...,14]n

in hand one need only cycle through the data once and evaluate

each t  i,j,k'! as in �.4! . Algorithm RT in Appendix B describes
0

this,

After executing these algorithms one has the collection

 i, j,k!: k = 1,...,n .; j = 1,...,J- ]. for each estuary  i!
and year of data  not denoted! . In order to identify the arrival

waves we evaluate the discrete probability mass function for each

of these sequences and identify their modes . Let p. n! be the1

empirically determined probability that a shrimp in estuary i

entered in week n. Then

J-
ij i

p- n! = Z Z I   t  i, j,k!!
n J. k 1 j=1 Inn+1!

ij i

where

1 i f a<x<1
 a,b! ' ! $ 0 otherwise

is the indicator function, and {p. n! : n = 1,...,52! is one such
1

mass function.

When tabled these sample functions provide information on the

structure of recruitment. Table 3 illustrates the concept. The



yearly character of recruitment and the tendency toward a two

wave recruitment are evident there.

1 2We identify the recruitment waves r. and ~. with the modal
1

weeks. These are defined by the two  in some uses only one! max-

ima in the probability mass functions. For example, the outlined

rectangles in Table 3 identify the modes. Since these estimated

probability mass functions are subject to sampling error, judgment

is used in distinguishing modal weeks. In particular, if the

probability mass in a suspected mode is less than .10, the week is

not considered the time of a recruitment wave.

1 1To evaluate the mean vector  E< ,...,E~>4! and the covariance
A j 1

matrix Z we let >. denote the week of the first recruitment wave
T 3.m

1 4
ET

4 m=1

w 1
'r.

im

Similarly, the sample covariance matrix is used to estimate ZT

The sample variances, on the diagonal o f the sample covariance

matrix, are

i = 1,...,54.

Table 4 shows the sample means and variances for the 54 sampling

sites.

The off diagonal entries in the sample covariance matrix are

used to estimate the correlation coefficients associated with the

correlation in recruitment times between nurseries. Examination

in sampling site i and year m  for 1974 m = 1;...; for 1977 m = 4! .
1

Then, an estimate of E<. is
1
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of these estimates reveal considerable variation in their values.

We feel that. a large part of this variation results from the

small sample size used in estimation rather than representing the

true correlation structure. To overcome this limitation we sep-

arately average the sample correlation coefficients from three

groups of estuaries: among the southern estuaries, among the

northern estuaries, and between southern and northern estuaries.
"T

Table 5 exhibits these quantities which we denote ps, pN and
A ppS< respectively. Analytically we write,

nb nd
p = c Z Z

a j=n i=n
a c

]Z  I. � E~.'! r. � Ez,
lm j. jm

m=1

1/2
 var <. var r.!

1 3

where

na nb nc nd

Because of the physical mechanisms of recruitment one expects

arrivals in one estuary to be associated with arrivals in the

other estuaries. This behavior is evident in Table 3 and is char-

acterized by the positive coefficients p>, pN and p>N

I'n order to sample  on a computer! recruitment times that
"r "7

have correlations pS, pN and pSN and variances as in Table 4,

requires that we compute a modified covariance matrix. This
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A ]
covariance matrix contains var ~ as the ith diagonal entry and

1/2
p  var z- var z-! �. 5!

where

N if i,j < 15
a� : S if i,j > 15

SN otherwise

as the ijth off diagonal entry. We return to this in the discus-

sion of computer sampling of recruitment times in Section 5.2.

An E/IIecl a  Caczelaf~a~ beCeeen Es.f~ac~ea an. Vartiat~avr ~n
Re.e<u~tme,et Time..

The correlation between estuaries can have a dramatic effect

on the overall variation in recruitment time, Consider for

1 1example, the f irst recruitment times tl,...,'t for n estuaries.1'''

Assume that each has variance a and that the covariance be-

tween any two is a'p

cruitment time is

Then, the variance of the average re-

n
var - Z 't ! = - �+ n 1! p! .n i i n

To see the effect of inter-estuarine correlation on the average

recruitment time we compare this variance with the variance of the

average recruitment time when estuaries are independent of one

another. Since in the independent case p = 0 the ratio of the

two vari,ances is

1 +  n-1! p.

For p as small as p< = .046 and n = 54 the variance of the
n



average recruitment time when accounting for correlation is over

2.4 times the variance in the independent case. This demonstrates

that even a smail correlation  .046! can have a pronounced effect

on the variation in recruitment time,

The second recruitment wave is characterized using the time

of the first wave and a probability mass function defined on the

inter-recruitment times. Recall that h~ . = T . � ~ - where
1 2

l 1 j.

if there is no distinct second wave. Let pr Aw, = m!j.0
1

be the probability that the time between recruitment waves in
1 1estuary i is m weeks, Then given x. = t. the time of the second
j. l

wave is

2 1
t. +m

1 1

with probability pr QT- = m!.
1

To estimate the probability mass pr hx = m! we first de-

compose it into two components and then estimate each component

separately. let p be the probability that estuary i has a dis-
1.

2 l N Stinct second wave  T- P < -! and let p  p ! be the probability
1 m m

that a northern  southern! estuary has inter-recruitment time m

given a distinct second wave. Then

if i is a northern estuary

if i is a southern estuary.

pipm
S

pipm
pr  hr = m!

1

One associates p. with the probabili,ty of "success" in a

Bernoulli trial, where "success" is a distinct second wave. Con-

sequently, we estimate p- by the ratio of years with d.istinct
I.

Eht~mal~ng the. PrrababiZi.ty h/ark FtLncCZon 0$ ante<-ceccuilmenf Ti.me..
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waves to years of data.

Similarly, one associates p  p ! with the probabilitiesiV S
.m -m

of a multinomial distribution. Since the largest inter-recruitment

wave period is seven weeks there are seven �! such probabilities.
VAccordingly, one estimates p  p' ! by

15 4
 Dz m! in

pm
4 ' 1

54
z Z 5 {hx !

S i=16 n=1
"m

4 ' {54-15!

where the Kronecker delta

!jl ifx=m
 m! $ 0 otherwise

For each estimate the value of the denominator equals the number

of terms in the numerator, which in turn is determined by the num-

ber of years of data and the number of estuaries in the northern

and southern groups. Table 6 shows estimates of {p', p
N S

1,...,7! and Table 7 shows estimates of  p.: i = 1,...,54!1

3.5 Out-mi ration to the Trans ort Areas

During spring and summer the population of growing juvenile

and young adult shrimp migrate from the upper estuaries toward

the higher saline water in the Pamlico Sound and open ocean. To

some extent the shrimp stratify by size from the upper reaches of

the estuaries to the es tuarine mouths. The larger shrimp are found

in the saline water in the estuarine mouth.
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where N is the number of fish in the nursery at time t and T

is the instantaneous rate of out-migration  transport! from the

primary nursery. The motivation for this representation is

based on the notion that the rate of out-migration depends

linearly on population size. Its solution

N 't! = N e �,6!

describes the population size as it changes in time  t] under the

assumption that N were initially cat t = 0! in the population.
0

By regulation  North Carolina Fisheries Regulations for

Coastal 9l'aters 1978! the nurseries are permanently closed to fish-

ing. However, the secondary nurseries, typically in the estuarine

mouths, are opened to fishing on a given date which signifies the

start of the shrimping season. Marine managers choose this date

through an analysis of the estuarine length and abundance samples.

Understanding the relationship between early nursery conditions

on the one hand, and the opening date and fishery productivity on

the other hand, is of crucial importance to both managers and

fishermen. One goal of the research, of which this report is a

part, is to develop a methodology to study this relationshi,p.

Toward this end we present a model of the migrations from nursery

to transport area.

This type of migration has traditionally been represented

 e.g. see Beverton and Holt 1957, pp. 136-148! by the solution

to the differential equation
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A similar model, which we extend, uses �.6! as a description of

mean behavior {Seber 1973, pp. 328-333!.

As it stands, �.6! aggregates migratory behavior over the

entire Pamlico nursery system resulting in a gross generalization of

population dynamics. The loss in structural detail is more pro-

nounced than one expects from a representation that models mean

behavior. To limit this loss, we continue to account for the dif-

ferences between estuaries as was done in Sections 3.1 and 3.2. In

particular, we extend the abundance representation �,6! in a way

that is consistent with the model of nursery recruitment.

In our discussion of migration and later in our discussion of

abundance we focus on catch per unit of fishing effort  CPUE! as a

measure of abundance. The CPUE is the number of shrimp captured in

the standard nursery sample discussed in Section 2. Note that

catch per unit effort is a random variable, When using this quan-

tity as a measure of abundance it. is important to know the condi-

tions under which it is evaluated. For short fishing periods, CPUE

is a reliable measure of current fish density and. consequently

abundance. On the other hand, if CPUE is determined from the catch

of a commercial fishery over a long period, where vessels can com-

pete with one another and fish can migrate considerable distances,

then the CPUE is a more difficult quantity to interpret. Beverton

and Holt  p. 27, l957! identify this issue and refine the definition

of CPUE to resolve these difficulties. In order to maintain this

distinction, and emphasize the relationship to abundance we refer to

sample CPUE in this study as- shrimp density.

There is a direct proportionality between abundance and density.
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In particular, if shrimp density is uniform throughout the

nursery then abundance is the product of density and nursery vol-

ume. Since shrimp density is measured in terms of a standard tow,

nursery volume must also be measured in terms of a standard tow, so

that one unit. of volume is the volume of water that is sampled in a

standard tow.

For estuary i and recruitment wave k let

V.{t! = a random variable that denotes the contribution ofk

the shrimp in recruitment wave k to shrimp density
at time t,

k
a model parameter.

Then as a description of mean shrimp density, �,6! becomes

i f t<T.
l

E{Vi. {t! ~ N.  t. ! =n j-=
n exp{-cP t T !! if T <t

1 l�

This is the expected contribution of recruitment wave k to shrimp

density at site i and time t given that recruitment wave k has

density n at v.. Comparing �,7! to �.6! one sees that n takes

the role of N , t-~. the role of t, and a. the role of T. Now, a.
0 I 1

is the parameter that reflects the rate of out-migration and natural

mortality, and consequently is the focus of estimation. For reading

ease, in the remainder of this report we write N for N. r~! ~k

In this setting, as in similar examples in Seber �973!, it is

natural to assume that N.  t! given N- =n is a binomial variate with
1 l.

parameters n and exp -e.  t- r, ! ! . One arrives at this charaater-k k

i

ization by considering the nursery sojourn time for a shrimp
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krecruited at z. as an exponential random variable with rate para-

k k
meter a. and location parameter r. . Its density function is

1� exp -ak  t-rk! !,
k i i
1

so that the probability that the shrimp remains in the nursery at
k

time t>T. 1S
1

k k
exp I; -a.  t- ~. ! !,

1 1

If one assumes that shrimp migrate independently of each other
k

and have identical sojourn time distributions then N.  t! given
I.

kN- =n has the aforementioned binomial distribution. The exponen-
1

tial model also yields 1/e, as the mean nursery sojourn time fork

1
k

shrimp arriving in estuary i at
l

.k k
The reader should note that if N. and r- are not given, then

1
k k

the distribution of N.  t! depends on the distributions of N. and
1 1

k and in general is difficult to characterize. In simulation
1

k k k
one approach is to sample N. and ~., and then sample N.  t! given

1 1

kN. from the appropriate binomial distribution. We return to this
1

topic in Section 5.

3.4 Estimatin the Parameters of Out-i%i ration

Recall that for the estuarine length and abundance samples

discussed in Section 3.2, J. denoted the number of sample tows
1.

taken in estuary i and t i, j! denoted the time o& the j th sample.

For estimation we identify sample time t i,j! with time t of

model �.7! . Since this model specifies that all shrimp recruit to
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the nursery either at x'. or r, it agrees with the model of re-
2.

since estimation techniques require that each shrimp

or ~. . For anv sample j sat-
I

no problem, these shrimp having

sample be identified with either
l

is fying x.' t i, j ! <r'. this presents

been recruited at r'. . However, for t i,j! « .' an additional

assumption is necessary. We assume that these shrimp are re-

cruited at -.I . Similarly, for t i,j!!Y' we assume that the

shrimp in sample j are recruited at ~'. . Examination of Table 3
1

shows that

pi t i,j!!
t i,j! <v.

is typically  for alternative sampling sites and years! less than

.10. Hence, the first additional assumption is rarely needed.

This adjustment is realized. via the transformation

fol t >i!!
-
1

t  i,j!

From �.6! one can salve for a. in terms of E   N- t  i,j!!

end E f N". t  i,j+1!! ~ Nk=n !. Then, using the estimate
kn.. of E   N.  t  i,j!! ~ N.=n > one obtains the estimate of a-

ij 1 1 1

given by
i ln  n../ n.. !

J.

lt  i, j+1! -t  i,j!
ZI k!  j!
j=l

�. 8!

cruitment in Sections 3.1 and 3.2. However, under this assump-
k

tion, a difficulty arises when estimating   ~.: i=1,... 54;k=1 ~ 2! ~
j
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for i=i,..., S4 and k=1,2. Here,

1 if k=1 and t  i, j+1! <T-

A 2
1 if k=2 and t  i, j! >v.

0 otherwise,

 k!  g!

The derivation of �.8! is presented in Appendix A.

Estimating the out-migration rate in this way yields the

sequence of estimates  a.: k=1,2; i=i,..., S4! for each year of"k

1

and southern sites, respectively. Xhere the weight f' or element
"k
a- is the ratio of the cumulative number of sampled shrimp used

1
kwhen estimating e. to the total number sampled. For example,

we have

lS k i
J.

a. Z n..I k!  j!
years of data i=i ' j=l '3

"k

N

years o f data

Table 8 shows the estimates of the brown shrimp out-migration

rates, Note that the rates are higher for the southern estuaries

than the northern estuaries. Ef this is not merely a result of

data. Analogous to the aggregation in Section 5. 2, we aggregate

the estimates  m. : i=i,...,14! k=1,2 and  u. : i=lS,...,54! k=1,2,k k

"kThen c<N k=1,2 and aS k=1,2 are the weighted. averages for the northern
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sampling variation, then it indicates that the shrimp in the

southern nurseries on the average have a shorter nursery sojourn

time than those in the northern nurseries. As a consequence one

expects shrimp in the southern transport areas to be on the average
smaller than those in the northern transport. areas. No attempt has

been made to examine this issue.

4. Abundance Model

Although shrimp size is an important factor in determining

catch revenue  Cohen and Fishman 1982!, overall population abundance

plays an even more important role. Consequently, the ability to
predict abundance levels early in the season would help alert com-

mercial fishermen of the year's harvest potential. With this

knox ledge and the guidance of fishery managers, fishermen could
make more informed fishing decisions. For example, in years of

limited abundance it might be more profitable for larger vessels to

choose an alternative, such as fishing in a region with a more

promising outlook, or rigging their vessels for an alternative

species.

Since all brown shrimp recruit to the nurseries at roughly

the same time, the abundance expected by the commercial fishery

can be estimated from nursery samples of juvenile shrimp. In fact,

marine biologists evaluate early nursery abundance as an aid in

determining fishery opening date and season outlook.
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As with the time of nursery recrui ment, the level of abundance

exhibits yearly variations attributable to various environmental
factors. It is generally acknowledged that because of the extreme

fecundity of shrimp, nursery environmental conditions contribute

more than spawning population size in determining the yearly

abundance level. This is supported by the Hunt et al {1979!

Study which reports on the relationship between several environ-

mental factors, including temperature and salinity, and yearly

harvest size.

Here, we take a different approach. Although we account for

random environmental factors, we characterize abundance at nursery

recruitment time in a way that focuses on reconstruction of an

arbitrary year with a computer coded version of the model. Then,

as will be described in a future report, by analyzing a sequence

of carefully designed experiments with the computer model, we de-

rive a relationship between nursery conditions, that includes

abundance, management decisions and harvest level.

In this section we concentrate on characterizing abundance,

and we continue developing model �.7! of Section 3.3. Recall that
k kN. is shrimp density at sampling site i and recruitment time1 1

Assuming that shrimp density is uniform throughout nursery i, one
ktakes abundance to be the product of N. and nursery volume. Since1

{3.7! explicitly accounts for shrimp density at recruitment and
then describes migrations from the primary nursery, it is sufficient

k
to characterize the joint distribution of fN-:k=l,2;i=l,...,54$I'
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to complete the description of population abundance and its

dynamics within the nursery.

4.1 Estimatin the Parameters of the Abundance Model

If one observed abundance at the time of nursery recruitment
kthen characterizing the joint distribution of  V.; k=1,2;i=1,...54!

would be straightforward.

sampled. To overcome this,

in representation {3.7! to estimate N. for k=1,2 and i=1, ...,54k

for each year of data. Let n. be this estimate. Then from �. 7!k
1

we have

J.
1

nijexP ~E{t' {i,j i JI Ia{k!,b{k!  t' i,j!!
g=l

�.1!

where

b�! = 52,

1 if a<x<b

Ia b>
0 otherwise

is an indicator function, and

"k
 xV i f 1< i<15

"k

Qs lgcg<54.

In this way, sampling site i recruitment density is estimated

for each of the four years data at each recruitment. time. Table 9

a{1! = 0

a�!

However, these quantities have not been
"k "kwe use the estimates ~V and nS

N



-28-

1 7
shows the sum of n and n, obtained with �.3.! fog the brown

j. j.

shrimp data. Using these quantities we evaluate the sample mean

vector and the sample covariance matrix of

  N.: i=1,..., 54!, where V. = N. + N..,1 2

A
the sample mean EN. and sample variance

1

the four years data on n. + n, for each1 2

l 1

the sequence

Table 10 shows
JL

var N. calculated using
j.

nursery i = 1,... 54

northern and southern estuaries.olving both
"N
p and

those coefficients inv

NpS , respectively. For
NNe denote these by

examp le, p> i s
"N

2 14

15'l4 i=1 k=i+1

where

p, =  var V, var Vi k!
-1/2

1
Z  n. -EN. !  nk-FVk!Z

years o f
data

The other coefficients are similarly defined.

Table 11 shows these quantities, Note that they are positive,

in agreement with our understanding of the physical mechanisms of

recruitment. That is, when density is high  low! in one estuary

it is likely to bo high  low! in other estuaries,

lt is also important to characterize the inter-estuarine

correlation in recruitment shrimp density. In the next section

we show how this correlation has a pronounced effect on the varia-

tion in yearly abundance. As in Section 3.2, where we examined the

correlation in recruitment time between estuaries, we calculate

three correlation coefficients, each an average of sample correla-

tion coefficients. >se separately average the correlation coeffi-

cients of the northern estuaries, of the southern estuaries, and
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In Section 5. 2 we show that for simulation purposes it is

useful to have estimates of the mean and variance of the trans-

formed random vector   lnN1, ..., lnN54 !, as well as the cor-

relation coefficients for the three groups of estuaries. To obtain

these quantities we follow the procedure described, above on the

transformed estimates   InN. : k=1, 2 ; i=1, ..., 54 ! for eachk

to estimate the probability that an arbitrary shrimp entering

estuary i enters at ~.. Ne denote this probability by p -.
k k
1 j

I/ere, the minimum variance unbiased estimator of p . is1
l

Pi
"1

years of
data

years of
data

"2 "1p. = 1 - p.  Johnson and Kotz pp. 56-57, 1969!.
1 1

p. for 1 < i < 54 obtained from the brown"1

and of p. is
"2

Table 14 shows

shrimp data.

Now, we turn to a discussion of the effects of inter-estuarine

correlation on the variance in abundance. This parallels the dis-

cussion in Section 3.2.

The. Ejjc~ a  CameL~an 5~een EhWaftiu ae Abundance, gamut.Wan

In Section 3. 2 we showed how the inclusio~ of inter-estuarine

recruitment correlation can have a significant effect on the var-

iation in the average yearly recruitment times. An analogous sit-

uation exists with regard to variation in overall yearly abundance

year of data. Tables 12 and 13 exhibit the estimated quantities.
kThe quantities I. n.: k 1,2; i 1, ..., 54 ! can also be used
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levels. In this case positive correlation between abundance

levels in various nursery areas increases the variation in total

system wide abundance over what it would be if the nurseries were

treated as independent.

Consider the sequence   N , , Nm !of shrimp density at1 1

recruitment time r. for estuaries 1<i<m. If we deno te the
1

I

m 2
var   Z X. ! =   Z V. ! na �+ m-l!o!.

i=1 i=1

Treating the nurseries independently implies that p = 0, so that

the ratio of variance of the dependent case to the independent case

�+  m-1!p !.

For demonstration, consider

"N "N "N
min < p ' , p , p !

.12S

For m=54,   1+ m-1! p ! = 7.62S, showing more than a 7-fold in-

crease in total variation in abundance when accounting for inter-

estuarine correlation over nat accounting for this dependence.

This example demonstrates the importance of accounting for inter-

estuarine dependence in a madel of population dynamics.

volume, assumed non-random, in nurs

the abundance at T. in estuary i1

I

for expository convenience assume t

and cor  N., N.! = p for 1<i<j<S41

abundance is

ery i by V., then V.N. is
1

I I I

Rewrite V. N. as X., and
1

i
7

hat var  N.! = var  N.! = a
1 1 2

I 3

Then the variance of total
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5. The Mi ration and Abundance htodels in a Fisher Simulation

for Myna ement Polic Anal sis

kRecall in Section 3. 3, N. denoted shrimp den

at t. , the time the kth recruitment wave arrivek
1

abundance at t. equals V.N., where V. is thek 3c
j. 1 1 1

sity in nursery i

d.. Shrimp

volume of nursery

l~
at T.' is still

j.

{n-z.!!. Conse-k
1

i. Ke also observed that a shrimp in the nursery
k kin the nursery at n>r. with probability exp -a.1

quently, as in trad.itional models {Seber 1973!, we represented
nursery abundance at time n by a binomial variate with parameters
V.N. and exp{-e.{n-z.!!. Here, we represent time by n tok k k

1 j. 1 3.

emphasize the weekly basis of sampling discussed in Section 5. 3.
In this section we modify this characterization in order

{1! to include the probabilistic dependence in observations of

So far we have focused on the development of models that

describe the early spring behavior of the brown shrimp population.

The analysis has included: �! a characterization of primary

nursery recruitment, �! a characterization of out-migration from

these nurseries, and {3! a characterization of primary nursery

shrimp density. This has been accomplished with the goal in mind
of linking these models with models of fishing and economic evalua-

tion of catch {Cohen and Fishman 1982! to form a useful tool for

management policy analysis. Toward this end this section describes

the distribution of length and abundance of both the shrimp in the

primary nurseries and of the outmigrating shrimp.

An example in Section 5.3 illustrates the methodology, where

we discuss simulating the process of sampling the primary nurseries

in the spring and show graphic results of such a simulation.

5.1 The Distribution of Len th and Abundance of Weekly Out-migrants
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abundance at different times, and �! to describe the number of

out-migrants from each nursery. Consider the cohort defined by

the kth recruitment wave, and for nursery i let

A. n! = abundance at time n,k

R.  n! = number of out-migrants during week n, andk

kM. n! = number of mortalities during week n.

Note that these quantities are random variables. Furthermore,

since A- n! is the abundance of the kth wave, for week n=r., Ai n!=k k k

V. N. and for n< T, A.  n! =0.k k k
1 1

Observe that any shrimp in the nursery at time n must either

remain in the nursery until time n+1, out-migrate during week n or

die during week n. The mass balance equation

A- n! =A- n+l! +R. n! +M. n!k k k k

hances the traditional model discussed in Section 3.3. In par-

ticular, given a. n! shrimp in the nursery at time n we assumek

1

that the vector  A.  n+1!, R.  n!, M.  n!!has a multinomial distri-k k k

bution with parameters a. /n!,
k

1

exp -e, !k

3.
probability that a shrimp in the nursery

remains there for the week,

probability that a shrimp in the nursery

out-migrates during the week, and

formalizes this relati.onship. Furthermore, it leads to a character-

ization of the random variables A- n+1!,R. n! and M. n! that en-k k k
1 1 i
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�- exp  � z. ! ! p = probability that a shrimp in thek

1

nursery dies during outmigration.

One can see that the parameter p is used to distinguish the
4

shrimo that migrate from those that die, The estimation of p is
discussed in later technical report.

The multinomia1 characterization implies that the random
variables A- n+1! and R- n! have marginal binomial distributions,k k

I 1

and that the distribution of A, n+1! derived from this model isk

j.

consistent with that discussed in Section 3. 3. In particular,

A.  n+1!- Bin a.  n!, exp -~. ! !k k k

Ri n!-Bin a.  n!, exp -a. !  ] -p ! !,k . k k

 S.l!

�. 2!

where the notation X-Bin N,p! means that X has a binomial dis-
tribution with parameters N and

Since A.  n! is customarilyk
1

large, the normal approximation

pp. 61-68! . In particular, the approximation yields for the ran-
dom variable A. n+1!k

i

pr  a<A.  n+1! <b! =4>  b-a.  n! p+1/2! /  a.  n! pq! !k k k 1/2

-4   a-a.  n!p+1/2! / a.  n!pa! !k l/2

where p = exp -g.!
1

q = 1-p

to the binomial distribution is applicable  Johnson and Kotz 1969,



and 0 .! is the distribution function of a normal random variable

with zero mean and unit variance. In a similar way we approximate
kthe distribution of R {n! with a normal distribution.
1

This approach for characterizing abundance preserves an impor-

tant property of the biological process. In particular, consider
k k k k kthe weekly sequence of abundances A.  T.!, A. {t. +1!,...,A. {52! .

Since these represent the abundance of a single cohort at

successive times, one would expect that

A. {z.! > A.  r.+1! ...»A. �2!
k

1

The characterization �,1! guarantees that this condition hold.s

with probability l, and. thus it induces autocorrelation in the

sequence of abundances.

The characterization also preserves an important property of

the out-migration process, In the field, once the shrimp have left

the primary nursery, they do not return. This means that the num-

ber of out-migrants is non-negative, Since R- n! being a binomialk
l

variate implies that R-  n! > 0 with probability 1, the descriptionk

of out-migration satisfies this condition.

To remove the dependence on cohort which has been carried

along in the characterization of abundance and out-migration, con-

sider abundance and the number of out-migrants as the sum of each

cohort's contribution. In particular, abundance in nursery i during

week n is

A  n! = A. n! + A. n!,
1 2

and the number of out-migrants during week n is
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R-  n! = R.  n! tR.  n! .
1 2

Algorithm SA in Appendix B describes a procedure for sampling

  Al n!,...,A>4 n! !: k=1,2;n=l,..., S2! and   Rl n!,...R>4 n! !:k k

for n<z.
1

1

for ~i n t  S.3!1 2
L n- T. !1 IS,  n!=

L n~ ! I 0 1!  U!+L 'n T! I 1 1!  U! for T. <n1 2 2
i O,p.!

1
p,, 1!l

1

Here,

L n-v.! k 1 is a random variable with density function �.1!

k with ht=n-w.! that represents the length of an
1

arbitrary shrimp of age n-v.,
k

U is a uniform �,1! random variable,

1
Pi is the probability that a shrimp in nursery i

arrived in wave 1, and

1 if' a<x<b

0 otherwise
I   b!  x!

is the indicator function.

The mean and variance of S,{n! will be of use in Section 5.3.

The mean is

n=l,...,52! in a computer simulation that follows our development.

The length of out-migrating shrimp and shrimp in the nursery

is also of interest to fishery managers. Let S.  n! denote the1

length of an arbitrary shrimp in nursery i at time n. Then S.  n!j.

is written as
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n 1 j.
Z p p.~  n-;, s!1

s=l

1 2
n

ES. n!=
1

k k
Z p p.u  n-T., !

s=l k=1

n ~ 2 1

and. its variance is obtained from the second moment,

1
n

1

p I: o L  n- ~i, s! + p< 'n- w., s! }2 1 2 1

s=l

1 2
T. < n < 'C. � 4b!

ES. n! 2=

Z p p-  oL n- T- s! Q~ n- T- s! }k 2 k Z k

s=l k=1

2
T- < n

1

and the identity

var S-  n! = E I S,  n! ] - [ES.  n!]2 2 �.4c!

5.2 Simulation Sam ling of Abundance and Recruitment Times

To sample the number of migrants in a weekly period using

recruitment times. This section concerns the distribution

k kof these quantities. For conciseness denote  rl,...,F54! by

and  Ml, ..., 254! by' 'A-k

Recall that Sections 3.2 and 4.1 discussed estimation of the

mean vector and covariance matrices of t and N where A was

defined to be 9 + 9 Also, the relationships

and w., and between shrimp2 1'
between

densities N. and1 j.1
recruitment

Algorithm SA requires observations of the recruitment wave

arrival times   Tl, ..., ~54! ; k=1,2 } as well as observationsk k

of the shrimp densities   Nl,...,N54!; k=1,Z } at the
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N. were characterized in a way that the distribution of the2

-2 -1 -1 -2
conditiona1 random vectors w given T, N given N, and N

given N were easily described. Algorithms ST1 and SNl in

Appendix B enumerate a procedure for computer sampling of' these

quantities that follows the earlier discussion. Because we have

characterized these quantities as conditional random variables

we now need to focus on the distribution of ~ and of N,

Sa.rnpLing T and M

As mentioned in earlier sections the data are not sufficient

to support estimation of the multidimensional distributions of
-1

recruitment time r and shrimp density N. In the absence of
-1

estimation we assume that r has a multinormal distribution

-1 1 1 1with mean ET =  E'Tl E'T2 ETg4! and covariance 2- .

This covariance matrix has  var xi, ..., var T>4! on the main1 1

diagonal and covariances evaluated with �.5! on the off-

diagonals, The estimation of these parameters is discussed in

Section 3.2. The multinormal distribution is convenient to

use in this application because the mean and covariance

completely specify the distribution, no additional parameters

are needed. In general this is not the case, additional para-
-1

meters would be needed to assure that v would have covariance Z-.T'
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This would require estimation of additional parameters from the

scant data'

Recall that the model of recruitment discussed in Section 3.2

aggregated all recruits within weekly period n to time n, the

beginning of the week. Consequently, ~. only assumed integerk

values. This is inconsistent with the normal characterization.

To reconcile this difference in a computer simulation, we sample a
-1

vector from the multinormal distribution with mean E~ and co-

then take the largest integer less than orvariance matrix

  Nj NS4! by a multilognormal random variable with mean

  ENl, ..., EN�! and covariances evaluated from the variances

equal to each element as the recruitment time.

Now, we turn to characterizing the distribution of shrimp dens-

ity N . There is empirical evidence supporting the assumption that

N has a multilognormal distribution. In a ten year study in North

Carolina, Williams �969! observed that the abundance of Penaeus

Aztecus in postlarvae samples followed a lognormal distribution.

This finding supports the model of recruitment abundance that

assumes that environmental factors affect abundance multiplicative-

ly  Ricker 1975! . By considering environmental factors as multi-

plicative weights of a base recruitment population, the actual

yearly recruitment can be represented by the product of each factor

and the base population. Under the assumption that the environ-

mental factors are independent, identically distributed random

variables  whose logarithms have finite first and second movements!,

the actual recruitment population has an approximate lognormal

distributions In view of the empirical evidence we approximate
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To summarize, algorithms thus far presented provide a method

for generating initial population profiles on a computer. By

executing the sequence of algorithms STl, SNl, ST2, SÃ2 and SA one

generates: �! the number of weekly out-migrants to each secondary

nursery and �! the weekly abundance within each nursery. Further-

more, with the characterization of shrimp length �.3! one has a com-

plete description of the nursery population of length and abundance

as a function of time. In the next section we demonstrate one appli-

cation of these models.

S.3 Simulatin Prima.r Nurser Sam lin

The value of simulation methodology becomes apparent when one

joins the algorithms for sampling population profiles with a model

of fishing and the economic evaluation of' catch  see Cohen and Fish-

man l982!. This enables one to sample fishery yield for alternative

initial populations so that questions regarding effective fishery

management can be addressed. For example, one valuable analysis is

to relate early nursery conditions with fishery yield in an effort

to determine a preferred fishery opening date. We follow this

example in detail in a later technical report. However, to demon-

strate the potential of the methodology here, we show length and

abundance data obtained from a computer simulation of the marine

biologists spring nursery sampling.

In order to s imulate this aspect of the fishery we require a

model of fishing. Since we have thus far not presented such a

model we briefly outline one. Let p e! denote the probability of

catching an arbitrary shrimp given e units of fishing effort.



Here, fishing effort is a measure of the fishery capitalization

and human resources that are applied Co shrimping in a week. In

the present application e measures the effort in 100 foot hours

of net used to sample a primary nursery. This means that for

e=l a 100 foot net is trawled for 1 hour. Richer �975! and Seber

�973! show analogous definitions for effort in other applications.

Let N- n! denote a sample of the abundance {or more accurate-
1

ly shrimp density! in nursery i at time n. Under the assumption

Chat shrimp are uniformly distributed throughout the nursery and

that each is caught independently of the others  Seber 1973! one

ob tains

N.  n! Bin{A.  n!,p e}! .

However, for large A. n! the normal approximation to the binomial
1

is applicable, so that

N-  n! - N  A.  n!p e!, A.  n!p e! �-p e! !!

where the natation X N p,a'! means that X has a normal

distribution with mean p and variance o'. This yields a

method for simulating primary nursery abundance sampling.

Furthermore, since managers typically consider the sample

average of shrimp length when analyzing nursery sampling data we

turn to simulating this aspect of sampling. Expression �,3! and

the result of a central limit theorem  Feller 1968! provide the

means for accomplishing this. An arbitrary shrimp in a given

sample of N. n! shrimp has length S. n!, with mean and variance
1

ES-  n! and var S.  n! as specified in �.4! . And similarly, for
3. 1

large N.  n! the sample average length, denoted S-  n!, is approxi-
1 1

mately normally distributed with mean ES.  n! and variance
l

var S.  n} / Fl.  n! .
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The analvsis of the last section completes the information

needed to describe a procedure for simulation sampling of each of

the S4 primary nurseries. Such a procedure would result in a large

number of observations as in fact occurs in practice. In the field

in a single week, at least 108 observations are made; S4 of abund-

ance and 54 of mean length. Consequently, when nurseries are sam-

pled for 10 weeks  May into July! a manager must evaluate the results

of over lOOG observations to determine policy, a formidable task.

Although in practice a manager may want to determine separate

policy for each estuary, or for groups of estuaries, in this example

we assume that policy is uniform throughout Pamlico Sound. To

simplify data analysis and demonstrate the computer sampling technique

we focus on statistics that summarize the information contained in

these numerous observations of length and abundance. In each week

we consider the average sample abundance N n! and the average sample

mean length S n! each computed from observations in the 54 primary

nurseries. These two quantities summarize the state of the fishery

in a way that avoids pitfalls associated with examining a large set

of observations. One pitfall that is avoided, is the tendency to

focus on those nurseries with comparatively large abundances.

Basing policy decisions on extreme values in this way may leal to

high variability in the revenue generated by the fishery. Since

typically, a goal of management is to limit, if not minimize,

variation this approach is to be avoided.

Algorithm SNUR in Appendix B enumerates the steps for

simulation sampling of these quantities.
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A simulation of primary nursery sampling using Algorithm SNUR

yielded observations of the catch in a 30 second tow N n! and the

mean shrimp length in the catch S n! for n=l8  May! to 29  Vuly!

for 1000 independent sampling replications. Table 15 contains sum-

mary statistics from the data generated by the simulation experiment

alongside similar statistics for the data described in Section 2.

We refer to the latter data set as the field data. The statistics

presented for each of these groups include the lower- quartile {Ql!,

the median  g2!, the upper quartile �3!, the mean and the standard

deviation.

These statistics provide a means of comparing data obtained

from the simulation model with the field data. Figure 1 is a plot

of the sample median  g2! of catch N n!, on the vertical axis, vs.

sample mean length S n!, on the horizontal axis, for each node on

the graph, and each curve is identified with data from which it is

derived.

Although clear distinctions exist between the two curves,

both exhibit relatively parallel downward sloping segments from their

peak abundance levels. However, greater variability exists in the

field data abundance than in the simulated abundance, no doubt

attributable in part to the limited number of observations from

which the field data are derived. These field data represent at most

four years of observations, whereas the simulated data represent 1000

replications of a year. Therefore, the reason for the smoother

simulated curve is clear.

Also observe in Figure 1 the more rapid growth in length in the



simulated data than in the field data. We can study this dis-

crepancy more closely by examining the series of histograms of

length obtained from the simulated data in Figure 2 for weeks 18

through 26. To facilitate comparison of the length data the field

data mean length and standard deviatjon of length are shown at the

base of each histogram, The short horizontal line indicates the

field data mean length and the vertical line shows one standard.

deviation from the mean.

The figure shows a tendency for the simulated growth in length

ta be more rapid than growth in length in the field data. However,

the figure also shows that the mean shrimp length from the field data

is often close to the mode of the histogram and that one standard

deviation from the mean often overlaps a substantial portion of the

histogram. This overlap together with the parallel downward slopes

in Figure 1 encourage us to regard the mechanism that. produced the

simulated length data as a reasonable one to use in our analyses.

Figure 3 is a similar graph of histograms of simulated abundance

by week. The long tail on the histogram shows the high variability

in the simulation generated data as does the long length of the line

representing the standard deviation of abundance from the field data.

It is also instructive to compare the sample medians of abundance of

the two groups of data. Figure 4 shows this comparison. Also in-

cluded in the figure are observations of sample abundance made by

Williams �955! in 1952-1953, Williams' data were scaled since his

measure of sa~pling effort differs from t'hat used here. consequently

one should focus on the shape of curves from his data rather than

the magnitude. Based on the observed level of agreement, one can
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regard the mechanism for generating the simulated abundance data

to be a reasonable one to employ for present purposes.

 he a$ Smear Samp~g ~ c Madel  ac Management Pohcy Aexlgm

The sampling technique can be particularly useful for examining

the effects of management policy on the fishery. Consider a model

of the fishery that enables the sampling of fishery performance

measures, such as the market value of catch or the quantity of

fish landed, as a function of management policy. If the model is

based on sampling the population profile, as we have suggested, it

will reflect considerable detail of the biology of the species.

This approach can be used. to show how fishery performance

changes with respect to alternative policies and various environ-

mental conditions. More importantLy, it provides a tool for designing

policy that exploits the current environmental conditions. For

example, consider sampling on a computer a sequence of weekly

estuarine length and abundance representing an arbitrary year. The

fishery performance under a host of alternative policies can be

evaluated while conditioning on this sequence of samples. Using

these data the preferred policy can be identified. In this way we

relate management policy to fishery performance. In the example

of the shrimp fishery the application of interest is the identification

of fishery opening dates that optimize fishery performance as a

function of estuarine Length and abundance data.
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In this technical report we presented 1! a model of post

larvae brown shrimp migration into the primary estuaries of the

Pamlico Sound, 2! a model of juvenile brown shrimp migrations from

the primary estuaries to the secondary estuaries and transport

areas, and 3! a model of estuarine abundance, Each of these models

accounts for mean behavior and for the random variation that is a

significant element of the biological processes. Furthermore,

the models of recruitment and abundance also account for the

correlation between estuaries. To highlight the importance of

inter-estuarine correlation we have shown how such correlation

affects the variation in mean recruitment time and in overall

abundance.

Techniques for estimation of model parameters are given and

are demonstrated with data on length and abundance of juvenile

brown shrimp, These data represent four years sampling in 54

estuaries in Pamlico Sound.

The models presented are part of a fishery simulation model for

the analysis of management. policy. They characterize the initial

conditions in the estuarine nurseries in a way that enables computer

sampling of a typical years' spring nursery conditions. Furthermore,

they provide the capability of simulating the nursery sampling that

the marine biologists perform each spring in their effort to assess

fishery conditions for management purposes. In Section 5 we

developed the simulation model and showed that the simulation qf

nursery sampling of length and abundance compares favorably tq

sampling in the field.
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TABLE 1

interval of Lengths

Definin Cate or

Length Category

15 20

20 to 30

30 to 40

40 to 50

50 to 60

60 to 70

70 to 80

80 to 90

90 to 100

100 to 110

110 to 120

120 to 130

130 to 140

140 to 150

25

35

55

65

75

85

95

105

125

135

145

Length Categories Used by' the Division
of Marine Fisheries in Data Collection
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TABLE 2

Division of Marine Fisheries

Primary Estuary Sampling Sites

NORTH

SB1Abel Bay

Spensers Bay

Rose Bay

Swan Quar ter Bay

Juniper Bay

East Bluff Bay

Wysocking Bay

Far Creek

Long Shoal River

SB4

3,4RBZ, RB4

SQB1,SQB3,SQB4 5,6,7

JB1

OC2

10, 11

12, 13

14, 15

WBl,WBZ

FC1,FC3

LSR1,LSR3

SOUTH

A-2Lower Spring Creek

Goose Creek

Upper Spring Creek

Oyster Creek

Clark Creek

Dog Creek

17

A-16

A-53

A-58

A-59

18

ZO

21

22

23, 24

25,26

27

28,29

Long Creek

Porpoise Creek

Middle Bay

Jones Bay

Pitch Creek

Samp 1 in S ite Code

Sam lin Site Code

B-10

B-ZO,B-Z1

B-30,B-32

B-40

B-43,B-44
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Primar Estuar

30

31

32

D-4 34

35C-8

36,37E-l,E-2

E-15

Swan Creek

Greens Creek 38

39F-1

F-3

41

F-12

F-22 43

44,45

46

Clubfoot Creek H-2

J-2 50Long Bay

Creek off Thorofare Bay J-10,J-31 51,52

Gales Creek

Smith Creek

Chapel Creek

Ball Creek

Bonner Bay

Dipping Vat Creek

Orchard Creek

Pierce Creek

!Uhittaker Creek

Krenshaw Creek

Dawson Creek

Turnagain Bay

Back Creek

Cedar Creek

Issac Creek

TABLE 2 t'continued!

Sam lin Site Code

C-N-5

C-N-10

C-N-14

C-S-2

G-l,G-3

G-20

G-23

G-24
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North Bay

L-1

Beard Creek  off

Veus e River!

TABLE 2  continued!

Sara lin Site Code
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TABLE 3

Estimated Probability Mass Functions of Recruitment Time

to Northern Pamlico

Sampling April
Site

i Code 16 17 18

JulyJuneMay

1 SB1

2 SB4

3 RB2

4 RB4

5 SQB1

6 SQB3

7 SQB4

8 JBl

9 OC2

10 WB1

11 WB2

12 Fcl

13 FC3

14 LSRl

15 LSR3

Sound Primary Nurseries for 1974 to 1977

 Table Enteries are p. n!!
tt

I

Week ' n �974!

19 '20 21 ZZ 23 24 25 26 27 28 29 30



Sampling
Site

i Code

1 SB1

2 SB4

3 RB2

4 RB4

5 SQB1

6 SQB3

7 SQB4

8 JB1

9 OC2

10 WB1

ll WBZ

12 Fcl

13 FC3

14 LSRl

15 LSR3

TABLE 3  cont inued!

Week n �975!

JulyJuneMayApr il

16 17 18 19 20 21 22 23 24 25 Z6 27 28 29 30
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Sampling April
Site

i Cade 16

1 SB1

Z SB4

3 RBZ

RB4

5 SQB1

6 SQB3

7 SQB4

8 JBl

9 OC2

10 14B1

11 WB2

1Z FC1

13 FC3

14 LSR1

15 LSR3

TAB LE 3  cont inued!

LVeek n [1976!

June July

20 21 22 23 Z4 25 26 27 28 29 30



Sampling
Site

i Code

1 SB1

2 SB4

RB2

4 RB4

5 SQB1

6 SQB3

7 SQB4

8 JB1

9 OC2

10 WB1

11 WB2

12 Fcl

13 FC3

14 LSR1

15 LSR3

TABLE 3  continued!

Week n �977!

JulyMayApril

16 17 18 1.9 20 Zl ZZ 23 24 25 26 27 Z8 29 30

~ The weeks are numbered sequentially starting with the first week

in January.

For some estuaries the sum of the recruitment time probability

mass function. may be ." - than 1.0. This is the result of roundoff

error and/or smal' values of P. t! .or t > 30  not shown in the table!
1



TAB I.E

the Mean and Variance of the TimeEstimates of

of the First Recruitment Wave

Sampling SiteSampling Site

var ~.
1 varEr.

"1

I.ET.
1

1.0019.00

22.33

19.25

284.9219.25

ZO.ZS

20.75

4.33

0.92

3.00

29.25

2.92

4.25

5.58

6.25

6.92

0.25

5.58

1.67

19. 50

20.00

18. 75

7.003219, 25

19. 75 3.5820.25

19.00

33

0.003421.25

1.6720.50

22.00

20.75 35

36 2 ~ 0019.ZS

18.53 9. 3319.5010

11

37

2.9220.2538

39

40

41

42

43

44

2.2520.75

21.25 22.50

20.50

8.9212 40. 33

1.67

0.33

4.33

1.33

38. 6721.00

19,50

21.33

Z1.33

2,2514

2.2515

0.5016

0.33

2.00

O.SO

17 1.00

0.33

19.00

18.67

2.25

4.05

19

2.9220

6.2521 0.00

2.00ZZ 6.92

11.33

0.25

1.33

23 0. 33

0.2524

2S

26

27

37.00

1.673.00

50.00 1.00

20.75

22.75

18.50

19 ' 67

21.00

19.50

19.75

19.25

20.75

22.00

21.75

21.00

20. SO

23.00

45

46

47

48

49

50

51

52

53

54

18. 75

19.50

18.00

18.00

19.33

19.25

16.00

19.50

22.00
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TABLE 5

Coe f ficient Value

.227'S

,046

, 136oSN

TABLE 6

Estimates of the Probability Mass

Function of Inter-recruitment

Times given a Distinct Second Wave

"S

>m
"N

.025.583

. 300.125

.ZZ5.000

~ 200. 291

.150.000

.050.000

.050.000

Estimated first Recruitment I!'aye Correlation

Coefficients
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TABLE 7

WaveEstimates

Sampling SiteSampling Site

G. 33

0.33

28

29

O.SO

0.25

0.25 30

31

32

33

34

0.75

0.75 0.25

0.75 0.33

0.250.25

0.00

G.SO

0.25

0.50

0.75

G. 33

0.0035

36 0.00

0.3337

38

39

40

41

0.25

0.000.50

0.50

O.SQ

0.75

0.25

0,33

0.00

0.00

0.00

0.25

0.25 42

0.50

0.33 44

4S

46

47

48

49

50

51

52

53

54

0.50

0.50

0.75

0.25

0.50

0.50

0.00

0.25

23

24

25

26

27

0.00 0.00

0.25 0.75

0.330.25

0.25 0.25

0.330.00

1 2 3
4 5
6 7
8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

of t ie Probability of a Distinct Second
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TABLE 8

Estimates of the Out-hligration Rates

u = .499
1

S
oV = .438

N

.S792

S
z

. 338

TABLE 9

Estimates of Relative Abundance at Nursery
Recruitment to Northern Sampling Sites

1 2
n. = n. +

1 1

YearSampling Site
1977197619751974

4 RB4

90

332

5 SQBj

6 SQB3

7 SQB4

8 JB1

9 OCZ

10 WB1

11 WBZ

12 FC1

13 FC3

14 LSR1

1S LSR3

279

66

199

31

54

188

433

170

350

425

284

378

48

17

64

28

11

30

123

218

228

197

71

61

Z6

84

82

146

219

150

34

364

197

312

209

161

189

9

74

310

899

560

227

229
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Table lO

of AbundanceEstimates

Site

EN.

Sampling
3

var N. x10 !
j.

3
var N. I x10 !

1
EN-

1

32.02 28291.07 442.33 5.08

43.08 2337.56

193477.30

29

30

31

308.57 1000. 67

7586.25295.89 35.28

167.25 3. 399. 39 109.25

51.9232 112.6717.03

11.64

121.2S

201.99 5.22136.50

40.67

1525 00

.Z64.4361.69

18.425.7784.35

671.00

176.33

544.25

160.75

77.27

194.32

570.316.44

26.26 20. 3010

3.3911

12

229.37

406.85 114. 35

54,88

15.26

3851.50

].026.75

304.05

236.55

40

41

42

13

14

28.67

35.11

7442.63

1,10

15

16

17

18

105.00

103.33

485.00

90.33

47.25

].86. 12

].63. 50

1735. 00

357.50

43

Z.16

65.1619 2223.50 2.23

7.32115907.7020 5580.50

18.82373.66

932.82 9. 6].

44,58

58.03

3,29

367. 45

34. 76

189.65

23

24

141.46

215.49

25

423.7526

1354.67 4898. 8725,092/

Sampling Site

559.50

1057.75

390.50

416.SO

405.50

533.75

136,00

of the Mean and Variance

33

34

35

36

37

38

39

45

46

47

48

49

50

51

52

53

54

81.50

126.00

190.00

174.67

237.75

473.67

346. 07

23.08

Z9201.78

1416.41

1.03

4.23

279.08
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Table 11

Coefficient Value

.125

"N

~v . 359

N
SN

.242

Estimated Abundance Coorelation Coefficients
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12TABLE

Estimates of the Mean and Variance

of the Log Transformed Abundance
Sampling Site

var �nN - ! i Et 1nN.!

Site

E   lnNi!
Sampling

var � nN i!

0.026.080.29 285.53

5.820.46 2.245.2Z

7.021.17

0.43

4.Zl30

31

32

33

34

5. 32

4. 58 2. 354.94

0.47

0.57

1.064.32

0.34 4.715.16

0.57 0.153.643.78

4.764.01 0.501.09 35

6.01 1.18

1. 38

0. 88

0.53

Z. 15

1.313.80

4.690.415.0410

5.86

3.94

0.045.4111

12 0.445.77

7.321.045.19

6.23

4,62

0.39 l. 87

3.01 0.0615

16

17

1.27

3.34

4. 45 0.45

5.79 0.72

0.230.01 4.4018

19

20

21

22

2. 113.090.01

4.00 0.91

1.04

0.23

5.99

4. 391.915.65

5.146. 29 2.20

0.27 1.024.645.8523

Z4 4.932.04

0.54

5.33

5.71

5.55

4.34

1.02

9.30

1.87

4.25

5.19

4.89

25

26

27

2.62

7.911.36

S. 31

4.23

4.56

6.05

5.88

7.70

6.06

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Sl

52

53

54
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Coefficient Value

"lnN
oS . 127

"lnN
.328

"lnN

SN
.228

TABLE l 3

Estimated Log Transformed Abundance

Correlation Coefficients
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of theEstimates

at

Sampling SiteSampling Site
"1

pi

.70.45

.72.60

36 .69

.71

.78.39

.85.43

.381.00

,62 1.00

.36 1.00

.48 .54

.76.52

.32 1.00

,68.38

.56 .50

.SZ .67

.34 1.00

.66 1.00

.77 1.00

.40 .72

.69 .82

1.00.50

.48 .65

1.00 1.00

.40 .52

.54 .33

.85 53

54

.74

.411.00

4

5

6 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Recruits

TABLE 14

Probability

Given it
l

that a Shrimp

Recruits

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4Z

43

44

45

46

47

48

49

50

51

52
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TABLE 15

Simulation Generated Data and Field Data Summary Statistics

M o W
n e

t e
h k

CatchLength

No. Ql QZ Q3 Mean StDev Ql QZ Q3 Mean StDev
94,9 241.312.1 19

32

18.1 33

11.7 20

18.5 37

12.0 17

17.8 33

4.7 27

19.2 28

1000

1

1000

3

18

M 19

a

1000

4

y 20

1000Zl

100022

14.1 14

22.5 22

11.8 21

26.3 16

9.3 28

29.0 12

16.7 6

38.1 8

4

1000

4

1000

4

1000

3

u 23

n

e Z4

25

16,3

335.8

30 .6

19.1

39.5100026

26.832.7 9

57.5 6

17.4 7

146. 6 4

9.6 3

3

1000

3

u 27
27. 2 223.0

26. 1 23 ~ 6

18.7 139.7

16.4 23.5

12.9 89.6

4

1000

4

1000

4

1

y 28

76.5 3

13.5 3

29

6.5

S Simulated dataData:

F = Field data

12 23 34 28.3

30 30 30 30

26 35 46 37.6

ZG 27 43 30.2

40 50 60 50.7

31 47 53 43.9

52 63 74 63.2

44 47 53 47.8

63 74 86 74.1

44 53 70 55.7

72 84 98 85.0

47 61 69 S9.2

79 93 108 94.4

63 67 80 69.9

86 103 121 104.8

75 90 107 90.5

93 112 134 113.6

53 109 110 90.7

9l 116 142 121.3

79 102 113 97.9

93 122 151 130.4

90 92 106 96.2

94 127 164 133.9

87 94 112 97.7

41 84

32 32

60 112

82 168

65 113

39 79

57 103

50 150

47 82

36 69

36 64

53 153

Z7 47

38 60

19 3S

14 36

14 Z5

9 62

10 18

21 51

7 13

6 40

5 9

5 11

122.1 241.8

89.8 74.2

122.6 221.5

45.2 33.6

108.0 183.5

76.0 72.0

93.1 192.7

39 ' 8 29.3

84.3 370.7

75.4 73.1

69.2 453.0

42.0 17.7

55.0 473.5
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APPENDIX A

In this appendix we show how the estimate e. defined in {3.8!
1

is derived from express ion �,7! . Recall that n.. is the catch in
ij

Also recall that n.. is an
iJestuary i in sample j at time t i, j! .

estimate of E[N. t {i,j!!~N.=n] where

0 if t  i j!<vk

n exp[-ai t  i,j!-~ !] otherwise.

 A. 1!

E[N.  t  i, j! ! V =n]k .. k

Now, consider samples j and j+1 that satisfy either

t  i g! < t  I j+1!
1 ..... 2  A. 2!

or

t  i,j! < t  i,j+1!
l

 A. 3!

Samples j and j+1 that satisfy one of these constraints contain

shrimp that are identified as having arrived in a single recruit-

 A.3! then shrimp in both samples arrived in recruitment wave 2 at
"2 For j and j+1 that satisfy either  A. 2! or  A,3! we write the

ratio of  A. 1! for j to  A, 1! for j+1 as

E[N. t  i,j!! IN-=n]

E [N. t  i,j +1!! ~N.=n]

n..
Ig

ij+1

exp [-cP  t {i, j! -t  i, j+1!!]  A. 4!

where k=1 if  A.2! holds and k=2 if  A,3! ho1ds. Note that for

ment wave. If j and j+1 satisfy  A.2! then shrimp in both samples

arrived in recruitment wave 1 at x., while if j and. j+1 satisfy
"1

1
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some j and j+l neither  A, 2! nor  A, 3! may hold.. Taking the ratio

in this way eliminates the unknown n from equation  A.l!. Solving
k A.4! for a. yields an expression whose quantities are all known,
i

In particular, we obtain 1n n../n- . 1!
1!+l

 A. 5!
t  i, j+1! - t  i, j!

The estimate <x. as defined by �.8! is the average of expres-
1

sion  A.5! over all j for which  A.Z! holds if k=1, or for which

 A.3! holds if k 2. We write the average precisely by defining

the function T k!  j! as 1 i f k= 1 and t  i, j+1!
1 if k=2 and t  i, j!

0 otherwise,

then summing the product of I  !  j! and expression  A. 5! over all
"k

J. samples. The estimate a thus obtained is
1 1

1 J. ln n.. jn.. !1 xg+1

Z ' ~! "'
j=l t  i,j+1! -t  i, j

' k.  j!
!

which agrees with �.8! .
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Algorithm EA

Given: p , 5', and   h :n=1,...,14 !s n'

1. n ~ 1.

2. max ~ 0.

3. x~

4. Evaluate g ~ ~x! using �.1!.
n

If max < g{K�~x!

max ~ g K ~x!.

5t{X ! ~ x.
n

go to 8.

8. x ~ x+5 ; if x < SZ go to 4.

14 go to 2,

'.n=l,...,14 !.

9. n ~n+1; if n

10. Deliver   At  A, !

The value of 6 determines grid size. Ye use 8 = .05 weeks.

Given:  At A !:n=l,...,14!, i, n , J.,  R..k.l<k<n..:1<j<J.j.

1. j ~ 1.

2. k ~ l.

ta i j,k! ~ t i,j! - ht

0 3.if k<n.. go t
1J

if j<J- go to

4. k ~ k+1;

5. j ~ j+1;

6. Return  to

Z.

APPENDIX B

This appendix contains algorithms used in �! estimation of

model parameters, for {2! simulation sampling of the initial popu-

lation profile, and for �! simulation sampling of spring nursery

sampling.



~"1 " 1 " 1 Erl,...,E~ 4!,  var xi....,var x54!"T
Give~: pV, pS, p>>,

A A A

Call COV given:  pV, pS, pSV, 16,  var Ti,...,var F54! ! return Z.
2. Call LTM given 2 return C.

3. For i=1,...,54 sample Z. from N�,1!
1

4. i ~ l.

1 1
5. w, ~ Er- + Z C Z.

1 1 ~ 1 iJ

o to 3.

8. i +- i+i. If i 54 go to S.

1
'54!9. Return  Tl,...,1

1 . Call COV given   pN ', pS , p>N',16, var lnN1!, ...,var lnN54! !"lnN "lnN "lnN

return Z.

Z. Cail LTi4 given Z return C.

3. For i=1,...,54 sample Z. from N�,1!
1

i+ l.
1

N. ~ EN + Z C- -2 ~ .
1 1 ~ 1 iJ

3=
5.

6. If N. < 0 go to 3.
i

7. i ~ i+1. If i < 54 go to S.

8. For i=i,...,54; N. exp Ni!.

9. Return  Nl,...,V54!.

Given' pV ' pS ' pSN '  F.  lnN1!,..., E  inN54! !,  var  lnN1 ' ' ' ', var  lnN54! ! ."lnN "lnN lnN
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Algorithm STZ

l. For i=1,...,54 sample U. from U�,1!

Z. i+- l.

3. I f U. >p. go to 10.
i 1

4. Sample W from U�,1! .

5. j ~ 0.

6. j ~ j+1.

7. If i < 15
3

and N > Z
m= 1

j
andÃ >

m=1

p then go to 6.
"N

p then go to 6.
"S

8. If i > 15

9. T. ~ r- + m+1
2 1

j. 1.

10. i ~ i+1. I f i < 54 go to 3.

11. Return  Tl ... 754!2 2

"1 "1
 Nl'' ''N54! '  pl' 'p54

1. i ~ 1.

2. Sample Z from N�,1! .
1 "1

3. N ~ N. p.+
j. i

4. If N. < 0 then go to 2,.1

i.

5. N: ~ N - N..
1

1 1 1

6. If N. � then go to 2.2

j.

7. i ~ i + 1, If i < 54 go to 2.

8. Return  Nl,...,N54! and  Nl N54!1 1 2 2

1 1 " " "N "S
Given:  Tl,- ,~54!,  Pl, -,P54!,<P',P
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ALGORITHM SA

k=1, 2!,  V ...,V
1 54

k ~ k+1. If k=2 go to 3.

6, i ~ i+1. If i<55 go to 2.

7. i ~ l.

8. j ~ l.

R. j! ~ 0.

j ~ j+l. If j<t.'+1 go to 9.

9.

10.

n ~ t.'+I

Sample Z> and 22 from a standard normal distribution.
p +  I-X l,k!! l-p !.

13.

14.

15.

16.

17,

18. k ~ k+1. If k<Z go to 13.

n ~ n+l. If n<52 go to 12.19.

20. i ~ i+1. If i<54 go to 11.

Return   Rl n! . ..,R54 n!! : n=l,...,52 ! and
  Al  n!,...,A54 n!!: k=1,2, 'n=l,...,52 !.

21.

For demonstrative purposes, in the example in Section 5.3

Given:   z,...., x !,
k k

I S4

and j:a.: k=1, 2k

l. i

Z. k ~ 1.

A   ! V,N,.k k

k
X i,k! ~ exp  -a,!.

q ~ l-p.

k
R. n! ~ A  n! p+Z

1 1

Ak  n+1! ~ Ak  n! X  
1 j.

 N Nk !k

54

i=1,..., 54!-,
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Given: ~1, CZ, I-3 k»d p I,...,V54!

1. i ~ l.

2. o, ~V
11

3. j ~ i+1,

P ~

5. If i ! k and j ! k then p ~ PZ.

6. If i   k and j   k then P ~

7. a.. ~ I-' V V.,
1J 1

8. o.. ~ o...
17 j1

9. j ~ j+l. If j   54 go to 4.

10. i ~ i+1. If i < 54 go to Z.

11. Return Z:-{o,.
ij

i=1,...,54; j=l,...,54!.

Given. Z-:{c-- : i=1,...,54; j =1,...,54] .
lg

1. a

2. For i=1,...,54, C.l ~ o.l/
11 il

3. 1 ~ Z.
i-1

C i  ,i - Z Cij!
j=1

If i=54 then return

lj2
4.

C-:{C..: i=1,...,54; j=1,...,54!
ij

6. i ~ i+1.

!-1
7. For j=2,...,i-l; C . ~{o-. - 2 C.> C >!/C..>3 >j 11 Il jl jj
8. Go to 4.

nursery volume is assumed equal at each sampling site i, with

total nursery volume equal to 100000, hence V.=1851.85 for i=1,

...,54. Total nursery volume is chosen so that the simulated

mean commercial catch biomass agrees in order of magnitude with

observed commercial catch biomass.
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Given: p e! ', I: Ai n!,...,A54 n! !; k=1,2; n=l,...,52k k

1. For n=l... 52; V n! ~ 0; S n! -' 0

Z. i ~ 1.

",�!
l

4. Sample Xl from Bin  A.1
1.

5. Sample X~ from Bin  A.2
j.

6. iV n! N n! + Xl + XZ.

7. If N n! =0 then go to 1

 n!, p e! ! .

 n!, p e!!

8. Evaluate ES.  n! and var S-  n! / Xl+XZ! using �. 3! .
1 1

9. Sample Z from > �,1! .

10. Yl ~ ES.  n! + Z

11. If Yl < 0 then go to 9.

12. S n! ~ S n! + Y
1

13. n ~ n+1. If n < 52 go to 4.

14. i ~ i+1. If i < 54 go to 3.

15. S n! ~ S n! /54, V' n! ~ V n! /54, return.

-7
tFor a 30 second tow with a 10 foot net p e! =1.4288x10
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