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ABSTRACT

An important aspect of fishery management concerns the
relationship between samples of the fish population, the true
state of the population, and management prerogatives. This rela-
tionship is particularly important to the brown shrimp (Penaeus
aztecus) fishery of Pamlico Sound, North Carolina, These shrimp
have an annual life cycle that begins in the early spring with
migrations as postlarvae from the ocean to the upper reaches of
the Pamlico Sound estuaries., In these estuarine nursery
grounds they grow to the juvenile stage and with growth migrate
roward the ocean. In an effort to assess the size of the com-
mercial population and to help with management decisions, marine
biologists sample the length and abundance of the juvenile estu-
arine population. One important management decision that is
based on these data is the time at which to open the commercial
shrimping season.

This technical report describes a component of a methodol-
ogy, based on computer simulation sampling, for the ‘analysis of
fishery management decisions of this type. It is the third in a
series of five reports that describe the methodology. It dis-
cusses modeling the early part of the shrimp life cycle and in
particular presents (1) a model of postlarvae shrimp recruitment
to the estuaries of Pamlico Sound, (2) a model of juvenile migra-
tion from the estuaries, and (3) a model of estuarine shrimp
abundance. Each of these models accounts for mean behavior and

for random variation that is a significant element of the
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biological processes. The models also account for autocorrelation
in estuarine abundance levels and for interestuarine correlationm,
which is shown to contribute significantly to variation in
recruitment times and abundance levels.

The techniques for estimation of model parameters are given
and are demonstrated with data from sampling of 54 nurseries
over four years in Pamlico Sound. Furthermore, to demonstrate
the simulation methodology, the report describes algorithms that
model the spring sampling of the juvenile population. The report
also shows statistics on length and abundance evaluated from

computer sampling according to those algorithms.
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Introduction

Commercial fisheries often take advantage of the seasonal
migration of a fish population, The brown shrimp fishery of
Pamlico Sound offers a good example. As part of their life cycle,
these shrimp migrate to the upper estuaries in the early spring
(recruit to the primary nursery areas) and migrate from the nur-
series to the transport or fishable areas during the late spring
and summer (recruit to the secondary nurseries and transport areas).
The local fishing industry adjusts its effort to coincide with mi-
grations to the fishable areas. Consequently, effective manage-
ment of the fish stock, typically involving scme form of constraint
on fishing effort, requires a comprehensive understanding of the
relationship between these migration patterns and harvesting ef-
fort. As part of a larger study to develop methodologies for eval-
uating fishery management policies, this report addresses modeling
in-migration to the nursery areas and out-migration from those
areas to the fishable areas,

For each estuary in-migration is characterized by an arrival
time and an abundance level. Each exhibits seasonal variation with
an annual period and also shows within-year random behavior. More-
over, between-year random variation in arrival times and abundance
levels can be substantial, These Tandom components account for en-
vironmental and meteorological variation which affect the popula-
tion and therefore the harvest.  Consequently, they are important
when modeling in-migration for management pelicy analysis. The de-
pendence between estuaries is also an important consideration. For

example, early (late) arrivals in one estuary increases the



likelihood of early (late) arrivals in other nearby estuaries,
This association and a similar interestuarine relationship for
abundance levels are essential parts of the in-migration process
and consequently are essential to a comprehensive characteriza-
tion,

Qut-migration also exhibits seasonal variation and random
fluctuations associated with within-year and between-year varia-
tion. We characterize it using a variant of diffusion migration
models discussed by Beverton and Holt (1957), Seber (1973), and
Ricker (1975). However, our approach differs from theirs in em-
phasis and application, Rather than focusing on a descriptive
analysis of out-migration we concentrate on a stochastic represen-

tation that as part of a simulation fishery model accounts for

autocorrelation in estuarine abundance levels.

We use the stochastic approach in modeling both in-migration
and out-migration. It enables one to sample the yearly arrival
times and abundance levels in the estuaries and then to simulate
the fishery under those nursery conditions., We call such a sample
population an initial population profile. By including the sto-
chastic elements of migration in a larger fishery model one can
assess alternative management policies for naturally occurring en-
vironmental conditions. For example, with this approach one may
learn that a specific management strategy performs particularly
well when abundance levels are low or when arrival times are
early. With this knowledge management would be alerted to the pre-
ferred strategy in a low abundance or early arrival year.

In particular, the report:

(1) Presents a model of in-migration to the primary nurseries.



(2)

(transport)} areas.
(3)
(4)

lected on the Pamlico Sound brown shrimp

1977 by the Division of Marine Fisheries

Presents a model of out-migration to the

Presents a model of populatien abundance

Estimates the parameters of these models

fishable

levels.
using data col-
from 1974 to

of the

Department of Natural Resources and Community

Development, the State of North Carolina.

(5)

Presents a procedure for sampling yearly initial popu-

lation profiles from a computer representation of the

migration and abundance models.

(6)

Presents a procedure for computer sampling that models

the marine biologists' sampling of the juvenile estu-

arine population,

The report also shows graphic re-

sults from such a simulation.

This report is the third in a series of five rTeports, describ-

ing the submodels which are the building blocks of a methodology

for management policy evaluation,

The first report, Cohen and

Fishman (1980), concentrates on modeling growth and the weight-

length relationship,
addresses the biomass-revenue and
The next report will focus on the
mass and fishing effort, Each of
of an additional component of the

final report will demonstrate the

the methodoiogy by exhibiting the

The second report, Cchen and Fishman (1982),

the mesh-weight relationships.
relationship between catch bio-
these papers supplies the details
fishery simulation model. The

usefulness and versatility of

results of a sequence of experi-

ments performed with the model for the goal of evaluating a set of



management strategies.

1. Biology of the Brown Shrimp of Pamlico Sound

The brown shrimp has an annual life cycle. The adults spawn
offshore in open water in early spring and the young (postlarvae)
migrate through the inlets into Pamlico Sound in February, March
and April (Williams 1964), The postlarvae seek the low salinity,
soft muddy regions of the upper estuaries (called primary nur-
series) as growing grounds (Williams 1958). The mechanisms by
which the postlarvae enter the inlets and traverse the sound are
unknown., However, there is evidence that copious migrations occur
during flood tides (Williams 1964, 1969) and on new moons (Williams
1964, Williams and Deubler 1968). This suggests that in addition
to the annual periodic component a monthly or biweekly component
may contribute to the time of peak recruitment.

Within the nursery environment the postlarvae grow to the
juvenile stage in four to six weeks (Perez Farfante 1969}, As the
juveniles mature they migrate downstream to the lower estuaries
(secondary nurseries and transport areas) toward the higher salin-
ity deeper water of the Pamlico Sound (Williams 1955). Migrations
continue through summer until the population has migrated from the
upper estuaries, to the sound, and finally to the open ocean to
spawn, thus repeating the cycle (McCoy 1968). There is no evi-
dence to correlate the between-year abundance levels or between-
year harvest sizes (Hunt 1979). However, tagging studies have
shown that shrimp within the sound migrate to the south and out of

the nearest inlet, and once in the open ocean they continue their



southern migration (McCoy 1968, McCoy 1972, McCoy and Brown 1967).
Many of the nurseries in the western Pamlico Sound, from Adams
Creek in the south to Stumpy Point Bay in the north, produce shrimp
in commercial quantities, To protect the young shrimp and other
maturing species, policy has been to prohibit fishing in the prim-
ary nursery grounds throughout the year (Shrimp Management Policy,
1978). Hence, brown shrimp are harvested outside the primary nur-
sery areas, principally within the secondary nurseries, the trans-
port areas, and the Pamlico Sound. Fishing commences with the
opening of the shrimping season by the Division of Marine
Fisheries. The commercial fishermen are eager to harvest in the
secondary nurseries and transport areas tc ensure that commercial
sized shrimp neither escape to the ocean nor are captured by com-

peting fishermen.

2. Description of Data

In an effort to associate the arrival times and abundance
levels in the nursery areas with an opening date for the fishing
season the Division of Marine Fisheries of the North Carolina
Department of Natural Resources and Community Development regul -
arly samples the nursery grounds of Pamlico Sound. The marine
biologists of the division have fixed sampling locations, choosing
several sites in each major estuarine system. Typically, samples
are taken with a % inch mesh trawl net under tow from 30 seconds
to several minutes. The specific times depend upon the observed
abundance level; long tows in low abundance situations.

For each tow, data consist of the frequency of gbservations
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in each of 14 length categories listed in Table 1, Each category
is identified by the midpoint of the 10 mm interval defining its
limits., Data so organized are easily representable in histogram
form as well as suiting other needs of the marine biclogists,

The data made available to us by the division were sampled
once a month in the late spring to early summer from 1974 to 1977
in two regions, one north of the Pamlico River (northern estuaries),
extending from Abel Bay to Stumpy Point Bay, and the other south
of the Pamlico River (southern estuaries}, extending from Adams
Creek to Spring Creek. The 54 estuaries in the data were all
identified as primary nurseries with the help of the marine biol-
ogists of the Division of Marine Fisheries. Table 2 names each
one and lists the code assigned to it by the division. The table
also lists an index i which identifies each of the sample sites in
the development that follows,

The reader should note that data were collected to provide
information about the pre-season state of the commercial shrimp
population, not to model the migration processes., Accordingly,
the models we consider have been restricted in scope to accommodate

the limitations of the data.

3. Migration Medels

This section presents models of in-migration and out-migration

separately, concentrating on time of migration and parameter esti-

mation.
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3.1 In-migration to the Primiary Nurseries

Three factors dominate the time of in-migration: 1) seasonal
variation, 2) random variation, and 3) interestuarine dependence,
Although the annual period of in-migration is its most apparent
cyclical feature another structural component, observed by biol-
ogists, is discernible in the data, This component associates
peak recruitment time (time of in-migration or arrival time to
the primary nurseries) with flood tides. Compounding the effects
of this component are random within-year and between-year varia-
tions whose numerous causes include estuarine salinity levels,
river currents, wind currents and water temperature. However, mno
unequivocal structural model relating these causes and variational
effects has been developed up to now, In fact, the mechanisms in-
volved are largely a matter for conjecture.

Because of this gap in our understanding and the absence of
field experiments for quantifying the relationship between these
environmental factors and recruitment time we propose a simple
stochastic characterization that results partly from a preliminary
‘analysis of the data and partly from known qualitative features of
in-migration.

If one could observe recruitment times directly, pattermns in
the data would suggest appropriate models of in-migrations. Un-
fortunately, these data are not available. However, one alterna-
tive is to estimate a recruitment time for each sampled shrimp
then peruse these estimates for patterns. This is a feasible ap-

proach since the approximate length of each sampled shrimp 1s



recorded in the data, and a model of shrimp growth can be used to
estimate shrimp age. If one assumes that substantive growth begins
after recruitment, this estimate and the known time of sampling
yield an estimate of recruitment time. Section 3.2 describes the
development of this estimation procedure.

The resulting analysis suggests the existence of at least two
major recruitment periods or waves. For the northern sampling
sites Table 3 shows estimates of the probability of recruitment in
each spring week for the four year data. Since recruitment time is
measured in weeks the probabilities define a probability mass func-
tion, This function assigns to each week the probability that a
shrimp arrives in that week. For each site the modes or peaks of
the mass function are identified by outlined rectangles. One
sees that many of the estuaries have two modes whose peaks have
considerable magnitude, with their sum often exceeding .70. This
supports the contention that in-migration is composed of two re-
cruiltment waves, Furthermore, for the northern nurseries the
time between recruitment waves (inter-recruitment wave period) is
less than five weeks, a period shorter than that over which the
data were collected.

This observed multi-wave recruitment is evidence of the rela-
tionship between recruitment and tides which has been noted in the
past (Williams 1964, 1969). In particular, inter-recruitment wave
periods on the order of a month parallel the long nperiod components
of the tidal forces. These components have fortnightly, monthly'
and semi-monthly periods, which result in tide height differences

of over a foot in some estuaries (Giese, Wilder and Parker 1979,



pp. 7-9).

The data also show a year in which recruitment occurs
predominantly in one wave. Considerable recruitment in week 21 of
1976 indicates the favorable conditions during that period, and
the consistency across estuaries shows the associative behavior
among them,

The reader may also observe that these recruitment times are
later than those noted by biologists (Williams 1955a, Williams
1955b, Williams 1964). This results from using in estimation a
model of shrimp growth that does not account for slow growth in
cold estuarine water in the spring. Consequently, the estimation
process consistently underestimates fish age. This however, is
no drawback when modeling the fishery for management policy analy-
sis, since by alsc using this growth model in the fishery simula-
tion model one obtains an accurate profile of the nursery popula-
tion in mid-spring. This is important since mid-spring is when
marine biologists sample the nursery for fishery management pur-
poses. We demonstrate the ability of the simulation model to rep-
licate nursery conditions in a nursery sampling experiment dis-
cussed in Section 5.3.

In view of these observations we characterize recruitment to
the primary nurseries by at most two waves. Let T} denote the
time of the first wave and Ti the time of the second wave for site

i. These quantities are integer valued random variables taking

values between 1 and 52. They are related by

Tz Tl
i =i
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with equality holding in the case of a single recruitment wave. We
denote the time between recruitment waves by &Ti so that hr, =
Tg - T% . Consequently, knowing Ti and AT; 1is equivalent to know-
in Tl and 12
E Ty i

The distribution of peak recruitment times is also important,
and a complete characterization of it includes provisions for the
relationship among recruitment waves in the different estuaries,
as well as the dependence between the first wave and the length of
the period between waves. A characterization of the joint distri-
bution of the vector [T},QT- i1 =1,,..,54) accomplishes these

1771 *

goals. Furthermore, this multidimensional distribution fulfills
the requirements of the simulation model for management strategy

evaluation.

3.2 Estimating the Parameters of In-migration

Ideally, one estimates the joint distribution of the vector
[T%,ATi :1=1,...,54) from a sample of the recruitment times.
Since four years of data are too limited to support this extensive
an endeavor, we restrict the estimaticn to: 1) the vector of means

(Erl :1i=1,...,54), where Eri is the expected time of the first

i
recruitment wave in estuary i1, 2) the covariance matrix ZT, where
the entry in row 1 and column j is the covarlance between the first
recruitment wave in estuaries i and j, and 3} the probability mass

functions of the time between recruitment waves. In section 5.1

we return to the problem of identifying the joint distribution.
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Estimating the Mean Vector and Covariance Matrix of Recrudfment
Time,

Here we complete the details of the procedure for estimating
the probability mass function of recruitment times as outlined in
Section 3.1. In particular, we show how the mean vector [ETi
i=1,...,54) and the covariance matrix I_ are estimated.

As the procedure requires a characterization of shrimp growth
we use the growth in length model described in Cohen and Fishman
(1980). This model asserts that the length L of a At week old

fish has probability density function

» ‘Q"UL(Atss)
g(e|at) = F ¢ ——————
s=1 "% o, (8t,5) (3.1)
where
2
b(x) = E /2
2T

is the standard normal density function, is the probability

®s
that a shrimp has sex s (s=1 for female and s=2 for male), and
uL(At,s) and cLz(ﬂt,s] are, respectively the mean and variance
of L. Further description of these parameters is in Cohen and
Fishman (1980).

Consider a shrimp with length [=2 at time t, and let T0 de-
note the time it arrives at a primary nursery. Since we assume
that shrimp growth begins at time of recruitment the shrimp is
AT =t - T0 weeks old. Although one cannot observe TO directly

it is possible to estimate it. One way is to estimate age At

and then use the relation TCl = t - AT . We follow this approach,
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and estimate AT as the age most likely for a shrimp with length &.
Then the estimate Eo of T0 is the quantity that satisfies
g(EIt-EO) = max  g(&lt-x). (3.2)
0<x<t
In practice a Eo is found for each sampled shrimp. The col-
lection is then grouped by estuary and year since this partition
is needed for estimating (ET? i =1, ...,54} and Ip

For sampling site i, in a given year let

J; = number of samples
nij = number of shrimp in the jth sample
t(i,j} = time of the jth sample
Qijk = length category of the kth fish in the jth
sample
to(i,j,k) = rtecruitment time of the kth fish in the jth

sample.

We estimate tuCi,j,k) by solving (3.2) for EO when &= £ijk
and t = t(i,j) and denote this estimate by ga(i,j,k). To expedite
computation, a two step procedure is employed. The first step,
described by Algorithm EA in Appendix B, finds an age estimate for
a fish having the length of each length category. For category
n, An denotes this length. The age estimate for a fish with this
length is denoted by AE(hn), and it satisfies

g(r fat(a )= o?i?sz g(A, %) . (3.3)

This approach limits computation since for each i, j and k,

Rijk=mn for some 1<n<14, so that

t (3,5, = t(i,3) - AR5, (3.4)
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Therefore, regardless of the number of observations one solves
only 14 maximization problems. A more direct approach would re-
quire the solution of the maximization in {3.2) for each observa-
tion. Furthermore, since our intent is to restrict recruitment
time to integer values, ﬁ%(kn} can be evaluated using a search
procedure on an appropriately sized grid. Algorithm EA describes
one such procedure. With the estimates {A%(kn] :n=1,...,14}
in hand one need only cycle through the data once and evaluate
each © (i,j,k) as in (5.4). Algorithm RT in Appendix B describes
this.

After executing these algorithms one has the collection
{%O(i,j,k) ko= 1,...,nij; j =1,...,J;} for each estuary (1)
and year of data (not denoted). In order to identify the arrival
waves we evaluate the discrete probability mass function for each
of these sequences and identify their modes. Let pi(n] be the
empirically determined probability that a shrimp in estuary i

entered in week n. Then

L i I3 )
pi(n} = L Z I (to(i’j!k))
nijJi k=1 j=1 [n,n+1)
where
1 if a<x<b
I[a,b)(x) - { 0 otherwise

is the indicator function, and {p;(n} : n = 1,...,52} is one such
mass function.
When tabled these sample functions provide information on the

structure of recruitment. Table 3 illustrates the concept. The
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yvearly character of recruitment and the tendency toward a two
wave Tecruitment are evident there.

We identify the recruitment waves Ti and Ti with the modal
weeks. These are defined by the two (in some uses only one) max-
ima in the probability mass functions. For example, the outlined
rectangles in Table 3 identify the modes. Since these estimated
probability mass functions are subject to sampling error, judgment
is used in distinguishing modal weeks. In particular, if the
probability mass in a suspected mode is less than .10, the week 1is
not considered the time of a recruitment wave.

To evaluate the mean vector (Eti,...,ET§4) and the covariance
matrix I_we let ;im denote the week of the first recruitment wave
in sampling site i and year m (for 1974 m = 1;...; for 1877 m = 4).

. 1.
Then, an estimate of ETi is

- 4
ET} = — © T,
l =

Similarly, the sample covariance matrix is used to estimate P
The sample variances, on the diagonal of the sample covariance

matrix, are

(rim ; ET;)Z i=1,...,54.

Table 4 shows the sample means and variances for the 54 sampling

sites.
The off diagonal entries in the sample covariance matrix are
used to estimate the correlation coefficients associated with the

correlation in recruitment times between nurseries. Examination
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of these estimates Teveal considerable variation in their values.
We feel that a large part of this variation results from the

small sample size used in estimation rather than representing the

true correlation structure. To overcome this limitation we sep-

arately average the sample correlation coefficients from three

groups of estuaries: among the southern estuaries, among the

northern estuaries, and between southern and northern estuaries.

Table 5 exhibits these quantities which we denote B; . o; and
DEN respectively. Analytically we write,
T 4 ~ a 7
n il 21 1 ~1
- b d (=~ £ {T; - ETH)(t. - ET})
by = c I £ |3 p=1 1M 17 gm ]
j=n_ i=n
a c ) ] X . 1/2
| (var 5 var Tj) i
where
a < Na Ty . Hg
N 2/45°14) 1 14 j+1 15
S 2/39°38) 16 53 j+l 54
SN 1/G69°15) 16 54 1 15

Because of the physical mechanisms of recruitment one expects

arrivals in one estuary to be associated with arrivals in the

other estuaries. This behavior is evident in Table 3 and is char-

~T
°N

In order to sample (on a computer} Tecrultment times

acterized by the positive coefficients bg ' and p;N .

that

. ) T ~T o . .
have correlations Pg s Py and PSN and variances as in Table 4,

requires that we compute a modified covariance matrix. This
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~

. . . 1 . .
covariance matrix contains var T, as the ith diagonal entry and

T 1 1
oy (var 7y var rj) (3.5)
where

s if 1i,j > 15
SN otherwise

N if i,j < 15
a =

as the ijth off diagonal entry. We return to this in the discus-
sion of computer sampling of recruitment times in Section 5.2.
An Effect of Cornelation between Estuaries on Vardlation in
Recauitment Time.
The correlation between estuaries can have a dramatic effect
on the overall variation in recruitment time., Consider for

1

_ . } . 1 .
example, the first recruitment times 71,,...,7Tj for n estuaries.

Assume that each has variance g? and that the covariance be-

tween any two is o’p . Then, the variance of the average re-

cruitment time is

1 2
LT - % (1+(n-1}p).

R =

var(%
i

To see the effect of inter-estuarine correlation on the average
recruitment time we compare this variance with the variance of the
average recruitment time when estuaries are independent of one
another. Since in the independent case p = 0 the ratio of the
two variances 1s

1 + (n-1)op.

For p as small as pﬁ = ,046 and n = 54 the variance of the
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average recruitment time when accounting for correlation is over
2.4 times the variance in the independent case. This demonstirates
that even a small correlation (.046) can have a pronounced effect

on the variation in recruitment time.
Estimating the Probability Mass Function of Tnten-rechudltment Time.

The second recruitment wave is characterized using the time

of the first wave and a probability mass function defined on the

i 2

inter-recruitment times. Recall that Ari =Ty - T3 where

At, = 0 if there is no distinct second wave. Let pr{dr; = m)

be the probability that the time between recruitment waves in

estuary i is m weeks. Then given Ti = ti the time of the second
wave 1is
2 _ 1
Tl—ti-l-m

with probability pr(Ari = m).

To estimate the probability mass pr(ar; = m) we first de-
compose it into two components and then estimate each component
separately. Let p; be the probability that estuary i has a dis-
tinct second wave (Ti # Ti) and let pg [pi) be the probability
that a northern (southern) estuary has inter-recruitment time m
given a distinct second wave. Then

pipﬁ if i is a northern estuary

pr[&Ti =m) = S
- P;iPn if i is a southern estuary.

—

One associates p, with the probability of "success"” in a
Bernoulli trial, where "success'" is a distinct second wave. Con-

sequently, we estimate p. by the ratio of years with distinct
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waves to years of data.

Similarly, one associates pﬁ (pi) with the probabilities

of a multinomial distribution. Since the largest inter-recruitment

wave period is seven weeks there are seven (7) such probabilities.
S

Accordingly, one estimates pE (p,) by

15 4 -

T L 3§ (ats.)
N 4=l pal WD
P, =

4 15

54 4 .

T T ¢ (At}
oS . izl6 n-l (m)"~"in

m 4 * (54-15)
where the Kronecker delta

{ 1 ifx=m
0 otherwise .

® (my ()
for each estimate the value of the denominator equals the number
of terms in the numerator, which in turn is determined by the num-
ber of years of data and the number of estuaries in the mnorthern
and southern groups. Table 6 shows estimates of {pﬁ, pi T mo=

1,...,7} and Table 7 shows estimates of {pi :i=1,...,54}

3.3 Out-migration to the Transport Areas

During spring and summer the populatien of growing juvenile
and young adult shrimp migrate from the upper estuaries toward
the higher saline water in the Pamlico Sound and open ocean. To
some extent the shrimp stratify by size from the upper reaches of
the estuaries to the estuarine mouths. The larger shrimp are found

in the saline water in the estuarine mouth.
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By regulation (North Carolina Fisheries Regulations for
Coastal Waters 1978) the nurseries are permanently closed to fish-
ing. However, the secondary nurseries, typically in the estuarine
mouths, are opened to fishing on a given date which signifies the
start of the shrimping season. Marine managers choose this date
through an analysis of the estuarinec length and abundance samples.
Understanding the relationship between early nursery conditions
on the one hand, and the opening date and fishery productivity on
the other hand, is of crucial importance to both managers and
fishermen. One goal of the research, of which this report is a
part, is to develop a methodology to study this relationship.
Toward this end we present a model of the migrations from nursery
to transport area.

This type of migration has traditionally been represented
(e.g. see Beverton and Holt 1957, pp. 136-148) by the solution

to the differential equation

g% = -TN,
where N 1is the number of fish in the nursery at time t and T
is the instantaneous rate of out-migration (transport) from the
primary nursery. The motivation for this representation is
based on the notion that the rate of out-migration depends
linearly on population size. Jts solution

-Tt
e

?

N(t) = N (3.6)

describes the population size as it changes in time (t) under the

assumption that NO were initially (at t = 0) in the population.
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A similar model, which we extend, uses (3.6) as a description of
mean behavior (Seber 1973, pp. 328-333).

As it stands, (3.6) aggregates migratory behavior over the
entire Pamlico nursery system resulting in a gross generalization of
population dynamics. The loss in structural detail is more pro-
nounced than one expects from a representation that models mean
behavior. To limit this loss, we continue to account for the dif-
ferences between estuaries as was done in Sections 3.1 and 3.2. In
particular, we extend the abundance representation (3.6) in a way
that is consistent with the model of nursery recruitment.

In our discussion of migration and later in our discussion of
abundance we focus on catch per unit of fishing effort (CPUE) as a
measure of abundance. The CPUE is the number of shrimp captured in
the standard nursery sample discussed in Section 2. Note that
catch per unit effort is a random variable. When using this quan-
tity as a measure of abundance it is important to know the condi-
tions under which it is evaluated. For short fishing periods, CPUE
is a reliable measure of current fish density and consequently
abundance. On the other hand, if CPUE is determined from the catch
of a commercial fishery over a long period, where vessels can com-
pete with one another and fish can migrate considerable distances,
then the CPUE is a more difficult quantity to interpret. Beverton
and Holt (p. 27, 1957) identify this issue and refine the definition
of CPUE to resolve these difficulties. In order to maintain this
distinction, and emphasize the relationship to abundance we refer to
sample CPUE in this study as shrimp density.

There is a direct proportionality between abundance and density.
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In particular, if shrimp density is uniform throughout the
nursery then abundance is the product of density and nursery vol-
ume. Since shrimp density is measured in terms of a standard tow,
nursery volume must also be measured in terms of a standard tow, so
that one unit of volume is the volume of water that is sampled in a
standard tow.
For estuary i and recruitment wave k let
Ni(t] = a random variable that denotes the contribution of

the shrimp in recruitment wave k to shrimp density
at time t,

k
a, = a model parameter.

Then as a description of mean shrimp density, (3.6) becomes

0 if t<Tki
K k. X (3.7)
ELN] (1) [Nj (r3)=nl= k. -k K

n exp{-ai(t-Ti)} if Tift

This is the expected contributicon of recruitment wave k to shrimp
density at site i and time t given that recruitment wave k has

density n at T?. Comparing (3.7) to (3.6) one sees that n takes

k k

the role of No, t—T% the role of t, and ay the role of T. Now, ay

is the parameter that reflects the rate of out-migration and natural
mortality, and consequently is the focus of estimation. For reading

ease, in the remainder of this report we write N% for Nf(T¥)‘

In this setting, as in similar examples in Seber (1973), it is_
natural to assume that N?(t) given N§=n is a binomial variate with
parameters n and exp{-ccli((t-Tlic}}. One arrives at this charaeter-

ization by considering the nursery sojourn time feor a shrimp
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: k . . .
recruited at 1; as an exponential random variable with rate para-

k . k . . .
meter o and location parameter LTI Its density function is

1 -nK K
_kexp{ af (t Ti)},

[
1

so that the probability that the shrimp remains in the nursery at
. k .
time t>T. 1S
i
k k
exp{-a; (t-t.)},

If one assumes that shrimp migrate independently of each other
and have identical sojourn time distributions then N?(t) given
N?=n has the aforementioned binomial distribution. The exponen-
tial model also yields l/af as the mean nursery sojourn time for
shrimp arriving in estuary 1 at T
The reader should note that if Nf and Tf are not given, then

the distribution of Nf(t) depends on the distributions of Nf and
k

TS, and in general is difficult to characterize. In simulation

. k .
one approach is to sample Nf and Tf, and then sample Ni(t) given
Nf from the appropriate binomial distribution. We return to this

topic in Section 5.

3.4 Estimating the Parameters of Out-Migration

Recall that for the estuarine length and abundance samples
discussed in Section 3.2, Ji denoted the number of sample tows
taken in estuary i and t(i,j) denoted the time of the jth sample.
For estimation we identify sample time t(i,j) with time t of

model (3.7). Since this model specifies that all shrimp recruit to
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the nursery either at T; or ri it agrees with the model of re-

cruitment in Sections 3.1 and 3.2. However, under this assump-
tion, a difficulty arises when estimating { a; d i=1,...54:k=1,2},

since estimation techniques require that each shrimp

sample be identified with either Ti or Ti . For any sample j sat-
isfying Tift(i,j)fTi this presents no problem, these shrimp having
been recruited at Ti . However, for t(i,j)<ri an additional

assumption is necessary. We assume that these shrimp are re-

cruited at ri . Similarly, for t(i,j)>Ti we assume that the
shrimp in sample J are recruited at T; . Examination of Table 3
shows that

> p; (t(i,3))
S |
t(i,3)<Ty

is typically (for alternative sampling sites and years) less than
.10. Hence, the first additional assumption is rarely needed.

This adjustment is realized via the transformation

t{i,j} for t(i’j)ZTi

t‘(lst = -~ ~
. teiL s
tH for (i J)>T1

From (3.6) one can solve for a% in terms of E { Nﬁ(t‘(i,j)) |N§=n }

and E { NE(t'(i,j+1}) | N§=n }. Then, using the estimate

n, . of E { N?(t'(i,j}) | N§=n } one obtains the estimate of u%
given by J.

ko iiln (n ij+1J )

& 7 z I(k)(J) (3.8)

o1t (1,3+1) t7(1,3)

(k)m
j=1
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for i=1,..., 54 and k=1,2. Here,

1 if k=1 and t’(i,j+1)fr§
~2
I(k)(J) = 1 if k=2 and t (1,3)>Ti

0 otherwise,

The derivation of (3.8) is presented in Appendix A.
Estimating the out-migration rate in this way yields the
sequence of estimates {&? : k=1,2; i=1,...,54} for each year of
data. Analogous to the aggregation in Section 3.2, we aggregate
the estimates {&§ : i=1,...,14} k=1,2 and {Qf : i=15,...,54} k=1,2.
Then &5 k=1,2 and ;; k=1,2 are the weighted averages for the northern
and southern sites, respectively. Where the weight for element

k. . - .
a; is the ratio of the cumulative number of sampled shrimp used

3 . k
when estimating o to the total number sampled. For example,

we have
J.
15 . i
2 oy IongTgy ()
~k years of data 1i=1 j=1 J
ay = .
15 i

o, i T ()

J
2 LI
yvears of data i=1 j
Table 8 shows the estimates of the brown shrimp out-migration

rates, Note that the rates are higher for the southern estuaries

than the northern estuaries., If this is not merely a result of
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sampling variation, then it indicates that the shrimp in the
southern nurseries on the average have a shorter nursery sojourn
time than those in the northern nurseries. As a consequence one
expects shrimp in the southern transport areas to be on the average
smaller than those in the northern transport areas. No attempt has

been made to examine this issue.

4. Abundance Model

Although shrimp size is an important factor in determining
catch revenue (Cohen and Fishman 1982), overall population abundance
plays an even more important role. Consequently, the ability to
predict abundance levels early in the season would help alert com-
mercial fishermen of the year's harvest potential. With this
knowledge and the guidance of fishery managers, fishermen could
make more informed fishing decisions. For example, in years of
1imited abundance it might be more profitable for larger vessels to
choose an alternative, such as fishing in a region with a more
promising outlook, or rigging their vessels for an alternative
species.

Since all brown shrimp recruit to the nurseries at roughly
the same time, the abundance expected by the commercial fishery

can be estimated from nursery samples of juvenile shrimp. In fact,

marine bioleogists evaluate early nursery abundance as an aid in

determining fishery opening date and season outlook.
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As with the time of nursery recruitment, the level of abundance
exhibits yearly variations attributable to various environmental
factors. It is generally acknowledged that because of the extreme
fecundity of shrimp, nursery environmental conditions contribute
more than spawning population size in determining the yearly
abundance level. This is supported by the Hunt et al {1979)

Study which reports on the relationship between several environ-
mental factors, including temperature and salinity, and vearly
harvest size.

Here, we take a different approach. Although we account for
random environmental factors, we characterize abundance at nursery
recruitment time in a way that focuses on reconstruction of an
arbitrary year with a computer coded version of the model. Then,
as will be described in a future report, by analyzing a sequence
of carefully designed experiments with the computer model, we de-
rive a relationship between nursery conditions, that includes
abundance, management decisions and harvest level.

In this section we concentrate on characterizing abundance,
and we continue developing model (3.7} of Section 3.3. Recall that
N? is shrimp density at sampling site 1 and recruitment time T?
Assuming that shrimp density is uniform throughout nursery i, one
takes abundance to be the product of N§ and nursery volume. Since
(3.7) explicitly accounts for shrimp density at recruitment and
then describes migrations from the primary nursery, it is sufficient

. ..k
to characterize the joint distribution of {Ni:k=1,2;i=1,...,54}
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to complete the description of population abundance and its

dynamics within the nursery.

4.1 Estimating the Parameters of the Abundance Model

I'f one observed abundance at the time of nursery recruitment
s s . . . k oL
then characterizing the joint distribution of {Ni:k=1,2;1=1,...54}

would be straightforward. However, these quantities have not been

sampled. To overcome this, we use the estimates &; and &g
in representation (3.7) to estimate N? for k=1,2 and i=1, «..,54
for each year of data. Let n? be this estimate. Then fronm (3.7)
we have

J.

1
~ A ..
jZ=:1 nijexp[aE(t'(l,J) TiJII[a(k),b(k))[t.(l’J))
k-
1
Ts (4.1)
I Lrs s

Z et b)) (I
where

a(l) =0

a(2) = b(1) = tZ

b(2) = 52,

1 if a<x<b

I (x) =;

[a,b) 0 otherwise
is an indicator function, and
oK <i<l§
ay +f 11
~“k
“s

In this way, sampling site 1

'E if 16<i<54.
recruitment density is estimated

for each of the four years data at each recruitment time. Table S
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shows the sum of n} and ni obtained with (4.1) for the brown

shrimp data. Using these quantities we evaluate the sample mean

vector and the sample covariance matrix of the sequence

{ N; ooisL,., 54}, where N, = N% + Né- Table 10 shows

the sample mean ENi and sample variance var Ni calculated using
1 2

the four years data on ny o+ ony for each nurserv 1 = 1,... 54.

It is also important to characterize the inter-estuarine
carrelation in recruitment shrimp density. In the next section
we show how this correlation has a pronounced effect on the varia-
tion in yearly abundance. As in Section 3.2, where we examined the
correlation in recruitment time between estuaries; we calculate
three correlation coefficients, each an average of sample correla-
tion coefficients. We separately average the correlation coeffi-
cients of the northern estuaries, of the southern estuaries, and
those coefficients involving both northern and southern estuaries.

We denote these by pﬁ R pg and pgN , respectively. For

~

example, pﬁ is

15-14  i=1 k=i+l

where
~ ~ ~ _1/’2 ~ ~
o.. = (var N, var N.) (n.-EN.)(n, -EN_).
ik 1 k yeag of i i k k
data

The other coefficients are similarly defined.

Table 11 shows these quantities. Note that they are positive,
in agreement with our understanding of the physical mechanisms of
recruitment. That is, when density is high (low) in one estuary

it is likely to be high (low} in other estuaries.
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In Section 5.2 we show that for simulation purposes it 1is
useful to have estimates of the mean and variance of the trans-
formed random vector ( InNy, «ov, InNc, ), as well as the cor-
relation coefficients for the three groups of estuaries. To obtain
these quantities we follow the procedure described above on the
transformed estimates { lnNE + k=1, 2 ; i=1, ,.., 54 } for each
year of data. Tables 12 and 13 exhibit the estimated quantities.

The quantities { n? + k=1,2 ; i=1, ..., 54 } can also be used
to estimate the probability that an arbitrary shrimp entering

estuary 1 enters at T?. We denote this probability by p?.

Here, the minimum variance unbiased estimater of p% is

51 = E (ni) E (nli-"n:%),

years of vears of
data data
and of p; is pl =1 - p} (Johnson and Kotz pp.56-57, 1969).
Table 14 shows 5% for 1 < i < 54 obtained from the brown

shrimp data.

Now, we turn to a discussion of the effects of inter-estuarine
correlation on the variance in abundance. This parallels the dis-

cussion in Section 3.2.

The Effects of Correlation Between Estuarnies on Abundance Varlation

In Section 3.2 we showed how the inclusion of inter-estuarine
recruitment correlation can have a significant effect on the var-
iation in the average yearly recruitment times. An analogous sit-

uation exists with regard to variation in overall yearly abundance
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levels. In this case positive correlation hetween abundance
levels in various nursery areas increases the variation in total
system wide abundance over what it would be if the nurseries were

treated as independent.

Consider the sequence { N}, Ceay Ni }of shrimp density at

recruitment time T% for estuaries 1<i<m. If we denote the

. . 1 .
volume, assumed non-random, in nursery i by Vi’ then ViNi is

the abundance at T} in estuary 1. Rewrite ViN% as Xi’ and

for expository convenience assume that var (Ni} = var (N}) = 02
and cor (Ni, N%) = p for 1<i<j<54. Then the variance of total
abundance is

var (I X;) = (I V;)no (1+(m-1}p} .
i=1 * i=1

Treating the nurseries independently implies that p = 0, so that
the ratio of variance of the dependent case to the independent case
is

(1 + (m-1)po J.
For demonstration, consider

N

p = min { ;é , ;§ , EEN }
.
= .125
For m=54, ( 1l+(m-1)p ) = 7.625, showing more than a 7-fold in-

crease in total variation in abundance when accounting for inter-
estuarine correlation over not accounting for this dependence,
This example demonstrates the importance of accounting for inter-

estuarine dependence in a model of population dynamics.
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5. The Migration and Abundance Models in a Fishery Simulation

for Management Policy Analysis

So far we have focused on the development of models that
describe the early spring behavior of the brown shrimp population.
The analysis has included: (1) a characterization of primary
nursery recruitment, (2) a characterization of out-migration from
these nurseries, and (3) a characterization of primary nursery
shrimp density. This has been accomplished with the goal in mind
of linking these models with models of fishing and economic evalua-
tion of catch {Cohen and Fishman 1982) to form a useful tool for
management policy analysis. Toward this end this section describes
the distribution of length and abundance of both the shrimp in the
primary nurseries and of the outmigrating shrimp.

An example in Section 5.3 illustrates the methodology, where
we discuss simulating the process of sampling the primary nurseries
in the spring and show graphic results of such a simulation.

5. 1 The Distribution of Length and Abundance of Weekly Out-migrants

Recall in Section 3.3, N? denoted shrimp density in nursery i

at r? the time the kth recruitment wave arrived. Shrimp

k k

abundance at Tj equals ViNi , where Vi is the volume of nursery

i. We also observed that a shrimp in the nursery at T? is still
in the nursery at n>r§ with probability exp(-ag(n-rg))- Conse-
quently, as in traditional models (Seber 1973), we represented
nursery abundance at time n by a binomial variate with parameters
V1N§ and exp(-a?(n-TE)). Here, we represent time by n to
emphasize the weekly basis of sampling discussed in Section 5.3.

In this section we modify this characterization in order

(1) to include the probabilistic dependence in observations of



-32-

abundance at different times, and (2) to describe the number of
out-migrants from each nursery. Consider the cohort defined by

the kth recruitment wave, and for nursery i let

A?(n) = abundance at time n,
R?(n) = number of out-migrants during week n, and
M?(n) = number of mortalities during week n.

Note that these quantities are random variables. Furthermore,
since A?(n) is the abundance of the kth wave, for week n=r§, A?(n)=
V.Nk and for n<rk, Ak(n)=0.

i1 i i
Observe that any shrimp in the nursery at time n must either
remain in the nursery until time n+l, out-migrate during week n or

die during week n. The mass balance equation
k _ak k k
Ai(n]—Ai(n+1)+Ri(n)+Mi(n)

formalizes this relationship. Furthermore, it leads to a character-
ization of the random variables A?(n+1),R?(n) and M?(n) that en-
hances the traditional model discussed in Section 3.3. In par-
ticular, given a?(n) shrimp in the nursery at time n we assume

that the vector (A?(n+1), R?(n), M?(n)]has a multinomial distri-

bution with parameters a?(n),

/]

exp(—a?) probability that a shrimp in the nursery

remains there for the week,

k
(1-exp(-2;))(1-p,)) = probability that a shrimp in the nursery

out-migrates during the week, and
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(l-exp(-oeli{])pU = probability that a shrimp in the

nursery dies during outmigration.

One can see that the parameter P is used to distinguish the
shrimp that migrate from those that die. The estimaticn of Py is
discussed in later technical report.

The multinomial characterization implies that the random
variables A?[n+1) and Rg(n) have marginal binomial distributions,
and that the distribution of Ag(n+1) derived from this model is

consistent with that discussed in Section 3.3. Im particular,

AE(n+l)~Bin(a?(n),exp(-a?)) (5.1)
R?[n)~Bin{a§(n),exp(—a?)(l-pu)), (5.2)

where the notation x~Bin(N,p) means that X has a binomial dis-
tribution with parameters N and p.

Since Ag(n) is customarily large, the normal approximation
to the binomial distribution is applicable (Johnson and Kotz 1969,
pp. 61-68). In particular, the approximation yields for the ran-

dom variable AE(n+1)

pr (acak (n+1) <b) =8((b-ak(n)pr1/2)/ (a1 (n)pa) 2y

-@((a—a?(n)p+1/2)/{ag(n}pq)l/z)

1t

where P exp{-ag)

L
1

1-p



-34-

and ¢(.) is the distribution functiocn of a nermal random variable
with zero mean and unit variance. In a similar way we approximate
the distribution of R?(h) with a normal distribution.

This approach for characterizing abundance preserves an impor-
tant property of the biological process. In particular, consider
the weekly sequence of abundances A?(T?), A?(TE+1),...,A§(52).
Since these represent the abundance of a single cohort at

successive times, one would expect that

k. _k k. k k
Aj (i) 2 Ay (1) 2 coa2A(52)

The characterization (5.1) guarantees that this condition holds

with probability 1, and thus it induces autocorrelation in the

sequence of abundances.

The characterization also preserves an important property of
the out-migration process. In the field, once the shrimp have left
the primary nursery, they do not return. This means that the num-
ber of out-migrants is non-negative. Since RE(n) being a binomial
variate implies that RS(n) > 0 with probability 1, the description
of out-migration satisfies this condition.

To remove the dependence on cohort which has been carried
along in the characterization of abundance and cut-migration, con-
sider abundance and the number of out-migrants as the sum of each
cohort's contribution. In particular, abundance in nursery i during
week n is

Ai(n) = Ai(n) + A%(n),

and the number of cut-migrants during week n is



-35-

Ry(n) = R (n)#R}(n).

Algorithm SA in Appendix B describes a procedure for sampling
{(Ag(n),...,A§4(n)J:k=1,2;n=1,...,52} and {(len),...R54(n])i
n=1,...,52} in a computer simulation that follows our development.
The length of out-migrating shrimp and shrimp in the nursery
is also of interest to fishery managers. Let Si(n) denote the
length of an arbitrary shrimp in nursery i at time n. Then Si(n)

is written as

0 for ngfi
1 1 2
Si(n}= L(H-Ti) for T;<n<T {5.3)
Len-t8)Tr. 1. (U)+LCn-72)I; 1 4+ (U) for ti<n
i’7[0,p3) SR S  2UR Y i

Here,
L(n-r?) is a random variable with density function (3.1)

{with At=n-t§) that represents the length of an
k

arbitrary shrimp of age n-7.,

U is a uniform (0,1) random variable,

—

P is the probability that a shrimp in nursery 1
arrived in wave 1, and

{1 if a<x<b
1 (x) =
[a,0) 0 otherwise

is the indicator functiom.
The mean and variance of SiEn) will be of use in Section 5.3.

The mean is
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’ 1
0 n < Ti
2 1 2
T op_ U, (n-1:,8) T: < N < T, (5.4a)
s L 1 i - i
ESi[n)= €+5=1
2 2 k X 2
h) L p_p:M, (n-1ti,s) no> T-
s=1 k=1 S 1 E 1 '
e
and its variance is obtained from the second moment,
( 1
C n < Ti
é o {szn-Tl s) + uzfn—rl 5)} Tl <n < 12 (5.4b)
C - . < T )
ESi(n)2= ds-1 8 L i L i i i
g g 0 pk{cz(n-Tk s) + uz(n-Tk s)} 12 < n
g=1 k=1 5 1t L 1 L 1 1
.,
and the identity
2 2
var S.(n) = E [S,(m)°} - [ES;(m)] . (5.4c)

5.2 Simulation Sampling of Abundance and Recruitment Times

To sample the number of migrants in a weekly period using
Algorithm SA requires observations of the recruitment wave
arrival times {[T¥, ce ey T§4] : k=1,2 } as well as observations
of the shrimp densities {(Nﬁ,...,N§4J ; k=1,2 } at the
recruitment times. This section concerns the distribution
of these quantities. For conciseness denote (T%,...,TE4) by
¥ and fN?, R N§4) by k.

Recall that Sections 3.2 and 4.1 discussed estimation of the

. ) -1 -
mean vector and covariance matrices of t- and N where N was

defined to be N + N°. Also, the relationships between

. . 1 A . ‘. 1
recruitment times Ty and 7y, and between shrimp densities N; and

=
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Nz were characterized in a way that the distribution of the
conditional random vectors - given ?1, e given N, and 12

given N were easily described. Algorithms ST1 and SN1 in
Appendix B enumerate a procedure for computer sampling of these
guantities that follows the earlier discussion. Because we have
characterized these quantities as conditional random variables

1

we now need to focus on the distribution of T and of N,

Sampling t and N

As mentioned in earlier sections the data are not sufficient
to support estimation of the multidimensional distributions of
recruitment time ! and shrimp density N. In the absence of
estimation we assume that 71 has a multinormal distribution
with mean Etl = (ET%, ET;, e Eréq) and covariance I-.

This covariance matrix has (var Ti, ee., Var T%4) on the main
diagonal and covariances evaluated with (3.5) on the off-
diagonals. The estimation of these parameters is discussed in
Section 3.2. The multinormal distribution is convenient to
use in this application because the mean and covariance
completely specify the distribution, no additional parameters

are needed. In general this is not the case, additional para-

meters would be needed to assure that %1 would have covariance Z%.
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This would require estimation of additional parameters from the
scant data.

Recall that the model of recruitment discussed in Section 3.2
aggregated all recruits within weekly period n to time n, the
beginning of the week. Consequently, TE only assumed integer
values. This is inconsistent with the normal characterization.

To reconcile this difference in a computer simulation, we sample a
vector from the multinormal distributicn with mean E%l and co-
variance matrix Z: then take the largest integer less than or
equal to each element as the recruitment time.

Now, we turn to characterizing the distribution of shrimp dens-
ity N . There is empirical evidence supporting the assumption that
N has a multilognormal distribution. In a ten year study in North
Carolina, Williams (1969) observed that the abundance of Penaeus
Aztecus in postlarvae samples followed a lognormal distribution.
This finding supports the model of recruitment abundance that
assumes that environmental factors affect abundance multiplicative-
ly (Ricker 1975). By considering environmental factors as multi-
plicative weights of a base recruitment population, the actual
yearly recruitment can be represented by the product of each factor
and the base population. Under the assumption that the environ-
mental factors are independent, identically distributed random
variables (whose logarithms have finite first and second movements),
the actual recruitment population has an approximate lognormal
distribution. In view of the empirical evidence we approximate
( Nl’ cons N54) by a multilognormal random variable with mean

EN.,) and covariances evaluated from the variances

( EN,, ..., ENg,
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(var Nl’ ..., var N54) and correlation coefficients pﬁ, pg,

and ;gN as discussed in section 4,1,

Algorithms ST1 and SN1 in Appendix B describe the procedure
for sampling (T},...,Té4) and [Nl,...,N54), respectively. Both
of these procedures call subroutines (auxiliary algeorithms) COV
and LTM which are also in Appendix B. COV constructs a co-
variance matrix from a vector of variances and correlation co-
efficients as shown in (3.5), while LTM is needed for sampling a
multinormal random variable on the computer. LTM performs the
Cholesky decomposition of a covariance matrix using an algorithm
taken from Fishman (1980).

One final note concerns sampling (Nl,...,N54) from a multi-
lognormal distribution. This distribution can be characterized
in at least two ways; one in terms of the mean and covariance of
(Nl""’N54) and the other in terms of the mean and covariance
of the transformed vector (ln Nl, cevy 1n NSd)' For simulation
purposes it is practical to generate an observation from the dis-
tribution of the transformed random variable which has a multi-
normal distribution and then to apply the inverse transformation
by exponentiating each element of the generated observation of

(In N «ev, In N Recall that in Section 4.1 we discussed

1’ 54)'
estimating the mean vector and covariance matrix of

(1n Nl,...,ln N54). We use these estimates in algorithm SNI1.
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Sampling the Initial Population Progile

To summarize, algorithms thus far presented provide a method
for generating initial population profiles on a computer. By
executing the sequence of algorithms STI, SN1, STZ2, SN2 and SA one
generates: (1) the number of weekly out-migrants to each secondary
nursery and (2) the weekly abundance within each nursery. Further-
more, with the characterization of shrimp length (5.3) one has a com-
plete description of the nursery population of length and abundance
as a function of time. In the next section we demonstrate one appli-
cation of these models.

5.3 Simulating Primary Nursery Sampling

The value of simulation methodology becomes apparent when one
joins the algorithms for sampling population profiles with a model
of fishing and the economic evaluation of catch (see Cohen and Fish-
man 1982). This enables one to sample fishery yield for alternative
initial populations so that questions regarding effective fishery
management can be addressed. For example, one valuable analysis is
to relate early nursery conditions with fishery yield in an effort
to determine a preferred fishery opening date. We follow this
example in detail in a later technical report. However, to demon-
strate the potential of the methodology here, we show length and
abundance data obtained from a computer simulation of the marine
biologists spring nursery sampling.

In order to simulate this aspect of the fishery we require a
model of fishing. Since we have thus far not presented such a
model we briefly outline one. Let p(e) denote the probability of

catching an arbitrary shrimp given e units of fishing effort.
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Here, fishing effort is a measure of the fishery capitalization
and human resources that are applied to shrimping in a week. In
the present application e measures the effort in 100 foot hours
of net used to sample a primary nursery. This means that for
e=1 a 100 foot net is trawled for 1 hour. Richer (1975) and Seber
(1973) show analogous definitions for effort in other applications.

Let ﬂi(n) denote a sample of the abundance {or more accurate-
1y shrimp density) in nursery 1 at time n. Under the assumption
that shrimp are uniformly distributed throughout the nursery and
that each is caught independently of the others (Seber 1973) one
obtains

N;(n) ~ Bin(A;(n),p(e))..
However, for large Ai{n) the normal approximation to the binomial
is applicable, so that
N;(n) ~ N(A;(n)p(e), A;(n)p(e)(1-p(e)))

where the notation X ~ N(u,c?) means that X has a normal
distribution with mean u and variance ¢®, This yvields a
method for simulating primary nursery abundance sampling.

Furthermore, since managers typically consider the sample
average of shrimp length when analyzing nursery sampling data we
turn to simulating this aspect of sampling. Expression (5.3) and
the result of a central limit theorem (Feller 1968) provide the
means for accomplishing this. An arbitrary shrimp in a given
sample of Ri(n) shrimp has length Si(n), with mean and variance
ESi(n) and var Si[n) as specified in (5.4). And similarly, for
large Ni(n) the sample average length, denoted Si(n), is approxi-
mately normally distributed with mean ESi(n) and variance

var S;(n) / ﬁi(n).
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Summarizing the Length and Abundance Information

The analysis of the last section completes the information
needed to describe a procedure for simulation sampling of each of
the 54 primary nurseries. Such a procedure would result in a large
number of observations as in fact occurs in practice. In the field
in a single week; at least 108 observations are made; 54 of abund-
ance and 54 of mean length. Consequently, when nurseries are sam-
pled for 10 weeks (May into July) a manager must evaluate the results
of over 1000 observations to determine policy, a formidable task.

Although in practice az manager may want to determine separate
policy for each estuary, or for groups of estuaries, in this example
we assume that policy is uniform throughout Pamlico Sound. To
simplify data analysis and demonstrate the computer sampling technique
we focus on statistics that summarize the information contained in
these numerous observations of length and abundance. In each week
we consider the average sample abundance N(n) and the average sample
mean length S(n) each computed from observations in the 54 primary
nurseries. These two quantities summarize the state of the fishery
in a way that avoids pitfalls associated with examining a iarge set
of observations. One pitfall that is avoided, is the tendency to
focus on those nurseries with comparatively large abundances.
Basing policy decisions on extreme values in this way may lead to
high variability in the revenue generated by the fishery. Since
typically, a goal of management is to limit, if not minimize,
variation this approach is to be avoided.

Algorithm SNUR in Appendix B enumerates the steps for

simulation sampling of these quantities.
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Discussion of Simulation Results

A simulation of primary nursery sampling using Algorithm SNUR
yielded observations of the catch in a 30 second tow N(n) and the
mean shrimp length in the catch $(n) for n=18 (May) to 22 (July]
for 1000 independent sampling replications; Table 15 contains sum-
mary statistics from the data generated by the simulation experiment
alongside similar statistics for the data described in Section 2.
We refer to the latter data set as the field data. The statistics
presented for each of these groups include the lower quartile (Ql),
the median (Q2), the upper quartile (Q3), the mean and the standard
deviation.

These statistics provide a means of comparing data obtained
from the simulation model with the field data. Figure 1 is a plot
of the sample median (Q2) of catch N{(n), on the vertical axis, vs.
sample mean length 5(n), on the horizontal axis, for each node on
the graph, and each curve is identified with data from which it is
derived.

Although clear distinctions exist between the two curves,
both exhibit relatively parallel downward sloping segments from their
peak abundance levels. However, greater variability exists in the
field data abundance than in the simulated abundance, no doubt
attributable in part to the limited number of observations from
which the field data are derived. These field data represent at most
four years of observations, whereas the simulated data represent 1000
replications of a year. Therefore; the reason for the smoother
simulated curve is clear.

Also observe in Figure 1 the more rapid growth in length in the
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simulated data than in the field data. We can study this dis-
crepancy more clasely by examining the series of histograms of
length obtained from the simulated data in Figure 2 for weeks 18
through 26. To facilitate comparison of the length data the field
data mean length and standard deviation of length are shown at the
base of each histogram. The short horizontal line indicates the
field data mean length and the vertical line shows one standard
deviation from the mean.

The figure shows a tendency for the simulated growth in length
to be more rapid than growth in length in the field data. However,
the figure also shows that the mean shrimp length from the field data
is often close to the mode of the histogram and that one standard
deviation from the mean often overlaps a substantial portion of the
histogram. This overlap together with the parallel downward slopes
in Figure 1 encourage us to regard the mechanism that produced the
simulated length data as a reasonable one to use in our analyses.

Figure 3 is a similar graph of histograms of simulated abundance
by week. The long tail on the histogram shows the high variability
in the simulation generated data as does the long length of the line
representing the standard deviation of abundance from the field data.
It is also instructive to compare the sample medians of abundance of
the two groups of data. Figure 4 shows this comparison. Also in-
cluded in the figure are observations of sample abundance made by
Williams (1955) in 1952-1953, Williams' data were scaled since his
measure of sampling effort differs from that used here. C(Consequently,
one should focus on the shape of curves from his data rather than

the magnitude. Based on the observed level of agreement, one can
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regard the mechanism for generating the simulated abundance data

to be a reasonable one to employ for present purposes.

Use of Simulation Sampling in a Model for Management Policy Analysis

The sampling technique can be particularly useful for examining
the effects of management policy on the fishery. <Consider a model
of the fishery that enables the sampling of fishery performance
measures, such as the market value of catch or the quantity of
fish landed, as a function of management policy. If the model 1is
based on sampling the population profile, as we have suggested, it
will reflect considerable detail of the biology of the species.

This approach can be used to show how fishery performance
changes with respect to alternative policies and various environ-
mental conditions. More importantly, it provides a tool for designing
policy that exploits the current environmental conditions. For
example, consider sampling on a computer a sequence of weekly
estuarine length and abundance representing an arbitrary year. The
fishery performance under a host of alternative policies can be
evaluated while conditioning on this sequence of samples. Using
these data the preferred policy can be identified. In this way we
relate management policy to fishery performance. In the example
of the shrimp fishery the application of interest is the identification
of fishery opening dates that optimize fishery performance as a

function of estuarine length and abundance data.
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6. Summary

In this technical report we presented 1) a model of post
larvae brown shrimp migration into the primary estuaries of the
Pamlico Sound, 2) a model of juvenile brown shrimp migrations from
the primary estuaries to the secondary estuaries and transport
areas, and 3) a model of estuarine abundance. Each of these models
accounts for mean behavior and for the random variation that is a
significant element of the biological processes. Furthermore,
the models of recruitment and abundance also account for the
correlation between estuaries. To highlight the importance of
inter-estuarine correlation we have shown how such correlation
affects the variation in mean recruitment time and in overall
abundance.

Techniques for estimation of model parameters are given and
are demonstrated with data on length and abundance of juvenile
brown shrimp. These data represent four years sampling in 54
estuaries in Pamlico Sound.

The models presented are part of a fishery simulation model for
the analysis of management policy. They characterize the initial
conditions in the estuarine nurseries in a way that enables computer
sampling of a typical years' spring nursery conditions. Furthermore,
they provide the capability of simulating the nursery sampling that
the marine biologists perform each spring in their effort to assess

fishery conditions for management purposes. In Section 5 we

develaped the simulation model and showed that the simulatjion of
nursery sampling of length and abundance compares favorably to

sampling in the field.
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TABLE 1

Length Categories Used by the Division
of Marinme Fisheries in Data Collection

Length Category Interval of Lengths
(mm) Defining Category
15 < 20
25 20 to 30
35 30 to 40
45 40 to 50
55 50 to 60
65 60 to 70
75 70 to 80
85 80 to 90
95 90 to 100
105 160 to 110
115 110 to 120
125 120 to 130
135 130 to 140

145 140 to 150
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TABLE 2

Division of Marine Fisheries
Primary Estuary Sampling Sites

NORTH
Primary Estuary Sampling Site Code
Abel Bay SB1
Spensers Bay SB4
Rose Bay RBZ2, RB4
Swan Quarter Bay SQB1,5QB3,50QB4
Juniper Bay JB1
East Bluff Bay 0C2
Wysocking Bay WB1,WBZ
Far Creek FC1,FC3
Long Shoal River LSR1,LSR3
SQUTH
Primary Estuary Sampling Site Code
Lower Spring Creek A-2
Goose Creek A-3
Upper Spring Creek A-16
Oyster Creek A-53
Clark Creek A-58
Dog Creek A-59
Long Creek B-10
Porpoise Creek B-20,B-21
Middle Bay B-30,B-32
Jones Bay B-40

Pitch Creek B-43,8-44

3,4

5,6,7

10,11
12,13

14,15

16
17
18
19
20
21

22
23,24
25,26
27
28,29



Primary Estuary

Gales Creek
Smith Creek
Chapel Creek
Ball Creek

Bonner Bay

Dipping Vat Creek

Swan Creek

Greens Creek

Orchard Creeck
Pierce Creek
Whittaker Creek
Krenshaw Creek

Dawson Creek

Turnagain Bay

Back Creek

Cedar Creek

Issac Creek

Clubfoot Creek

Long Bay

Creek off Thorofare Bay

_49..

TABLE 2 (continued)

Sampling Site Cede

C-N-5
C-N-10
C-N-14
C-5-2

E-1,E-2

E-15

F-1
F-3
F-4
F-12
F-22

G-1,G-3
G-20
G-23
G-24

J-2
J-10,J-31

30
31
32
33

34
35

36,37
38

39
40
41
42
43

44,45
46
47
48

49

50
51,52
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TABLE 2 (continued)

Primary Estuary Sampling Site Ceode

North Bay J-20

Beard Creek (off

Neuse River) L-1

53

54
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TABLE 3
Estimated Probability Mass Functions of Recruitment Time
to Northern Pamlico Sound Primary Nurseries for 1974 to 1977

(Table Enteries are pi(n)]++

week' n  (1974)
Sampling April May June July
Site
i Code 16 17 18 19 20 21 22 23 24 25 26 27 28 129 30
1 SB1 .02|.44|.05}.36|.02 .07 .04 .02 .00
2 SB4 .03].31|.04t.49|.02 .05 .03 .00 .01
3 RB2 .241.05 .01 .06}.64 .00 .00
4 RB4 .36(.01 .01 .19].31].03 .06 .01 .00
5 SQB1 .03 .29 .03 .06(.32].20 .02 .04 .02
6 SQB3 .00 .031.48{.33 .00 .04 .05 .01 .02 .02 .01 .01
7 SQB4 .03 .13].46/(.36
8 JB1 .01 .051.73 .00 .06 .04 .01 .07
9 0Cz2 .05 ,011.81}(.00 .01 .03 .03 .00 .01 .01 .01
10 WB1 .39].11 .00 .11].32.00 .00 .03 .00 .00 .00 .00
11  WB2 L04(.131.03 .08 .28¢.32 .02 .04 .02
12 FC1 .121.00 .00}(.60|.01 .03 .06 .14
13 FC3 .35/.02 .01 .041.40},01 .02 .09 .04
14 LSR1 .49%.,00 .03(.32].00 .01 .10 .00 .03 .01
15 LSR3 .03 .03 .171.471.02 .04:.21 .00




Sampling
Site
1 Code
1 SBl
2 SB4
3 RB2
4  RB4
5  SQBl
6 SQB3
7 SQB4
8§ JB1
9 0C2
10 WB1
11 WBZ
12 FC1
13 FC3
14 LSR1

15

LSR3
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TABLE 3 (continued)

Week m (1975)
April May June July
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
46 .13].32}.02 .01 .01 .02 .01 |
11146 {.03[. 40
.05 121.47] .24 12
.65 (.03 .05 221 .05
18 .09 [.36 09 .09 .19
.03 .10 [.34].34 02 .03 .03 .07 .04
75].00 .09 .07 .02 .04
1.0
.19 17| .25] .17 .19
.251.04 .06}.53|.04 .01 .01 .01 .01
26|.02 .16{.47].01 .01 .01 .02 .01
00 .01 .05 .13 .18|.34[.07 .00
01 .11l.45].07[.19].01 .04 .04 .02 .04
.03 11].42{.02 .01 .11 .06 .07 .09 .02 .02
06 .03 .05|.50].32 .01 .00 .01




Sampling

Site

i Code
1 SB1
Z SB4
3 RB2Z
4 RE4
5 SQB1
6 SQB3
7 SQB4
8 JB1
9 0CZ
10 WBI
11 WB2
12 FC1
13 FC3
14 LSR1

15

LSR3
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TABLE 3 (continued)

Week' n (1976)
April May June July
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
.01 .19}.57].11 02 .02 .02 .04
01 .10}.72].10 .01 .01 .03
.02 .16}.61] .09 .02 .05 .02 .02
.00t .49) .19 .04 .09 .03 .01 .02 .02
.07{.77] .07 .03 .02 .04
.03 .11].64] .07 .03 .02 .02 .03
.91 .03 .06
.01].68| .05 .01 .02 .08 .13].02
.01 .07].75] .04 03 .02 .03
.01 .10].63] .15 01 .02 .04
.00 .02 .39]| .46 .02 .02 .01 .02
.02 .03 .25| .32 .05 .08 .04 .08 .06 .01 .02
1.0
.07 .85} .03 .01 .02 .02
.35 .17 .48
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TABLE 3 {(continued)
week' n (1977)

Sampling April May June July
iSltEOde 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 SBl 24 .06|.55}.07 .02 .03 .01 .01
2 SB4 .05 .33].32] .12 .05 .04 .07 .03
3 RB2 .02 .131.38{.19 .19 .03 .02 .03
4 RB4 .21 .05 ,11}.36).02 .12 .13
5 SQB1 } .43 .02 .04].30|.09 .02 .07 .01 .00 .01 .00
6  SQB3 { .40 .01 .02|.26].06 .04 .20 .01 .01
7  SQB4 | .00 .02 .05|.50(.14 .05 .09 .05 .05 .05
8 JB1 ‘ .22 .03 .15)].227.14 .14 .10
9 0Cc2 .63 .05 .05 .10 .05 .05 .05
10 WB1 .05 .01 .18{.38].11 .20 .06 .01 .0l
11 WB2 .05 .00 .04}.42|.05({.26|.07 .05 .02 .03
12 FCl1 .02 .08}.35]{.05({.17|.16 .06 .04 .04 .01
13 FC3 .26 .00 .06).36(.04 .12 .06 .01 .00 .06 .02 .02
14 LSR1 .04].54{.03|.28].03 .02 .05 :01
15 LSR3 .01 .05 .01 .01 .081.59¢(.25 .01

t The weeks are numbered sequentially starting with the first week
in January.
++ For some estuaries the sum of the recruitment time probability
mass function may be :ess than 1.0. Tais is the result of roundoff

error and/or small values of Pi(t) for t > 30 (not shown in the table).
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TABLE 4
Estimates of the Mean and Variance of the Time

of the First Recruitment Wave

Sampling Site Sampling Site
i ET% v;r T% i E;% v;r r%
1 1 1 1
1 19.25 4.92 28 19.00 1.00
2 20.25 .25 29 22,33 4.33
3 20.75 2.92 30 19.25 0.92
4 18.75 4.25 31 19.50 3.00
5 19,25 5.58 32 20.00 7.00
6 19.75 6.25 33 20.25 3.58
7 21.25 6.92 34 19.00 0.00
8 20.75 0.25 35 20.50 1.67
g 19.25 5.58 36 22,00 2.00
10 19.50 1.67 37 18.53 9.33
11 20,75 2.25 38 20.25 2.92
12 21.25 8.92 39 22.50 40.33
13 21.00 38.67 49 20.50 1.67
14 20.75 2,25 41 19.50 0.33
15 22.75 2.25 42 21.33 4.33
16 18.50 0.50 43 21.33 1.33
17 19.67 0.33 44 19.00 1.00
18 21.00 2.00 45 18.67 0.33
19 19.5¢0 0.50 46 18.75 2.25
20 19.75 2.92 47 19.50 4.05
21 19.25 6.25 48 18.00 0.00
22 20.75 6.92 49 18.00 2.00
23 22.00 11.33 50 19,33 0.33
24 21.75 0.25 51 19.25 0.25
25 21.00 1,33 52 16.00 37.00
26 20,50 3.00 53 19.50 1.67
27 23.00 50.00 54 22.00 1,00
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TABLE 5
Estimated First Recruitment Wave Correlation
Coefficients
Coefficient Value
T
Pg 227
~T
Prg L046
~T
SN L136
TABLE ©

Estimates of the Probability Mass
Function of Inter-recruitment

Times given a Distinct Second Wave

n P P
1 .583 025
2 123 .300
3 .000 225
4 .291 .200
5 .000 .150
6 .000 L050

7 .¢00 .050
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TABLE 7

Estimates of tie Probability of a Distinct Second Wave

Sampling Site Sampling Site
i P, i D,
1 0.50 28 0.33
2 0.25 29 0.33
3 0.25 30 8.75
4 0.75 31 0.25
5 0.75 32 0.33
6 0.25 33 0.25
7 0.00 34 0.33
8 0.50 35 0.00
9 0.25 36 0.00
10 0.50 37 0.33
11 0.75 38 0.25
12 0.50 39 0.00
13 0.50 40 0.75
14 0.50 41 0.25
15 0.25 42 0,33
16 0.50 43 0.00
17 0.33 44 0.00
18 0.50 45 0.00
19 ¢.50 46 0.25
20 0.75 47 0.50
21 0.25 48 0.00
22 0.50 49 0.25
23 0.00 50 0.00
24 0.25 51 0.75
25 0.25 52 0.33
26 0.25 53 0.25
27 .00 54 0.33
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TABLE 8

Estimates of the Out-Migration Rates

r\l_ 1=

ay = .438 aS .499

~y 2 _

ay = .338 aS = ,579
TABLE 9

Estimates of Relative Abundance at Nursery

Recruitment to Northern Sampling Sites

n;, = n% + ni

Sampling Site Year

i Code 1974 1975 1976 1977
1 SB1 532 184 130 318
/ SB4 482 109 150 493
3 RBZ 474 32 355 322
4 RB4 279 48 144 197
5 SQB1 66 17 90 312
6 SQB3 199 64 332 209
7 SQB4 31 28 26 161
8 JB1 54 11 84 189
9 0C2 188 30 82 8
10 WBl 433 123 146 74
11 WBZ 170 218 219 310
12 FC1 350 228 150 899
13 FC3 425 197 34 560
14 LSR1 284 71 364 227
15 LSR3 378 61 4 229
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Tahle 10
Estimates of the Mean and Variance of Abundance
Sampling Site R Sampling Site
i EN; var Ni(xlﬂs) i ENi V;r Ni(xlos)
1 291.07 32,02 28 442,33 5.08
2 308.57 43.08 29 1000.67 2337.56
3 295,89 35.28 30 7586.25 193477.30
4 167.25 9.39 31 169.25 3.39
5 121.25 17.03 32 112.67 51.92
) 201.99 11.64 33 136.50 5.22
7 61.69 4.453 34 40.67 .26
8 84.35 5.77 35 1525.00 18.42
9 77.27 6.44 36 671.00 570.31
10 194,32 26,26 37 176.33 20.30
11 229,37 3.39 38 544.25 346 .07
12 406.85 114,35 39 160.75 23.08
13 304.05 54,88 40 3851.50 29201.78
14 236.55 15.26 41 1026.75 1416.,41
15 186.12 28.67 42 105.00 1,03
16 163.50 35.11 43 103,33 4,23
17 1735.00 7442.63 44 485.00 279.08
18 357.50 1.10 45 90.33 2.16
19 2223.50 65.16 46 47.25 2,23
20 5580.50 115907.70 47 81.50 7.32
21 559.50 373.606 48 126,00 18.82
22 1057.75 932.82 49 190.00 9.61
23 390.50 34.76 50 174.67 44 .58
24 416,50 189.65 51 237.75 58.03
25 405.50 141.46 52 473.67 3.29
26 533.75 215.49 53 423.75 367.45
27 136,00 25.09 54 1354.67 4898.87
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Table 11

Estimated Abundance Coorelation Coefficients

Coefficient Value
o .125
;§ .359

N .242

PSN
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TABLE 12

Estimates of the Mean and Variance
of the Log Transformed Abundance

Sampling Site A Sampling Site R
i E(lnNi) var[lnNi) i ﬁ(lnNi) var(lnNi)
1 5.53 0.29 28 6.08 0.02
2 5.22 0.46 29 5.82 2.24
3 5.32 1.17 30 7.02 4,21
4 4.94 0.43 31 4,58 2.35
5 4.32 1.06 32 4.53 0.47
6 5.16 0.34 33 4.71 0.57
7 3.78 0.57 34 3.64 0.15
8 4.01 1.09 35 4,76 0.50
9 3.80 1.31 36 6.01 1.18
10 5.04 0.41 37 4,69 1.38
11 5.41 0.04 38 5.86 0.88
12 5.77 0.44 39 3.94 0.53
13 5.19 1.04 40 7.32 2.15
14 5.31 0.39 41 6.23 1.87
15 4,23 3.01 42 4,62 d.06
16 4.56 1.27 43 4.45 g.45
17 6.05 3.34 44 5.79 0.72
18 5.88 0.01 45 4.40 0.23
19 7.70 0.01 46 3.09 2,11
20 6.046 5.9¢ 47 4.00 0.51
21 5.65 1.91 48 4,39 1.04
22 6.29 2.20 49 5.14 0.23
23 5.85 0.27 50 4.64 1.02
24 5.33 2.04 51 4.93 1.02
25 5.71 0.54 52 4.25 9.30
26 5.55 2.62 53 5.19 1.87
27 4,34 1.36 54 4.89 7.91
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TABLE 13
Estimated Log Transformed Abundance

Correlation Coefficients

Coefficient Value
,oénN 127
~1nN
ox .328

1nN 228

PsN
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TABLE 14

Estimates of the Probability that a Shrimp

Recruits at Ti Given it Recruits

Sampling Site

i

W00 =l v U R

L T e O R N T S T O S T T e S v Y G T
B = R B N L= TR V= T - - S T NS T SO SO SR S Y

pi
.45
.60
.36
.55
.39
.43
1.00
.62
.36
.48
.52
.32
.38
.56
.52
.34
.66
77
.40
.69
.50
.48
1.00
.40
.54
.85
1.00

Sampling Site
i
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
438
49
50
51
52
53
54
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TABLE 15
Simulation Generated Data and Field Data Summary Statistics
M
o W D
n e a Length Catch
t e t
h k a No. Q1 Q2 Q3 Mean StDev Q1 Q2 Q3 Mean StDev
18 S 1000 {12 23 34 28.3 12.1 19 41 84 94.9 241.3
F 1 30 30 30 30 - 32 32 32 32 -
M 19 S 1000 |26 35 46 37.6 18.1 33 60 112 122.1 241.8
a F 3 20 27 43 30.2 11.7 20 82 168 89.8 74.2
y 20 S 1000 | 40 50 60 50.7 18.5 37 65 113 122.6 221.5
F 4 31 47 53 43.9 12.0 17 39 7% 45.2 33.6
21 S 1000 | 52 63 74 63.2 17.8 33 57 103 108.0 183.5
F 4 44 47 53 47.8 4.7 27 50 150 76.0 72.0
22 S 1000 | 63 74 86 74.1 19.2 28 47 82 93.1 192.7
J F 4 44 53 70 55.7 14.1 14 36 69 39.8 29.3
u 23 S 1000 )| 72 84 98 85.0 22.5 22 36 64 84.3 370.7
n F a 47 61 69 59.2 11.8 21 53 153 75.4 73.1
e 24 8§ 1000} 79 93 108 94.4 26.3 16 27 47 69.2 453.0
F 4 63 67 80 69.9 9.3 28 38 60 42.0 17.7
25 S 1000 | 86 103 121 104.8 29.0 12 19 35 55.0 473.5
F 4 75 9¢ 107 90.5 16.7 6 14 36 19.1 16.3
26 S 1000 )93 112 134 113.6 38.1 8 14 25 39.5 335.8
J F 3 §3 109 110 90.7 32.7 9 g 62 26.8 30.6
u 27 S 1000} 91 116 142 121.3 57.5 6 10 18 27.2 223.0
1 F 4 79 102 113 97.9 17.4 7 21 51 26,1 23.6
y 28 S 1000|993 122 151 130.4 146.6 4 7 13 18.7 139.7
F 4 90 92 106 96.2 9.6 3 6 40 16.4 23.5
29 S 10004 %4 127 164 133.9 76.5 3 5 9 12.9 89.6
F 4 87 94 112 97.7 13.5 3 5 11 6.5 4.0
Data: S = Simulated data

F

= Field data
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APPENDIX A

In this appendix we show how the estimate &§ defined in {(3.8)
is derived from expression {3.7). Recall that n;, is the catch in
estuary i in sample j at time t{i,j). Also recall that nij is an
estimate of E[N?(t‘(i,j))|N§=n] where

0 if t7(i,i)<7k (A1)

k .. k
E{N.(t"(i Ny=n] = ;
[ l( (1,7)) ] i ] n exp[-aﬁ(t'fisj)“TEJ] otherwise.

Now, consider samples j and j+1 that satisfy either

Thoc tT(E,1) < tU(i,5+1) < o (A.2)
orTr
T2 < t701,3) < tT(d,i4D). (A.3)

Samples j and j+1 that satisfy one of these constraints contain
shrimp that are identified as having arrived in a single recruit-
ment wave. If j and j+1 satisfy (A.2) then shrimp in both samples
arrived in recruitment wave 1 at ;%, while if j and j+1 satisfy
(A.3) then shrimp in both samples arrived in recruitment wave 2 at
2. For j and j+1 that satisfy either (A.2) or (A.3) we write the

ratio of (A.1) for j to (A.1) for j+1 as

. QNS (£7(1,5)) IN=n]

Risel B[N (e (i, 5+1)) [WKen]

exp (-0 (£7(1,§) -7 (4,5+1))] (A.4)

where k=1 if (A.2) holds and k=2 if (A.3) holds. Note that for
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some j and j+1 neither (A.2) nor (A.3) may hold. Taking the ratio
in this way eliminates the unknown n from equation (A.1). Solving
(A.4) for u? yields an expression whose quantities are all known,
In particular, we obtain

ln(nij/nij+1)
(A.5)

t7(i,j+1)-t7{1,7)

~k
The estimate a; as defined by (3.8) is the average of expres-
sion (A.5) over all j for which (A.2) holds if k=1, or for which
(A.3) holds if k=2, We write the average precisely by defining

the function ICk)(J) fs

1 if k=1 and t°(i,j*1) < 5

o — e iy 02
I(k)(J) =4 1 if k=2 and t7(i,j) > Ty

0 otherwise,

b

then summing the product of I(k)(j) and expression (A.5) over all

J; samples. The estimate o; thus obtained is

1 J: [In(ny /n13+1) .
or.]i( = e Z o o I(k)(J)’
j=1lt (i,j+1)-t7(41,]

Ef I(kJ

which agrees with (3.8).
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APPENDIX B
This appendix contains algorithms used in (1) estimation of
model parameters, for (2) simulation sampling of the initial popu-
lation profile, and for (3) simulation sampling of spring nursery

sampling.

Algorithm EA

Given: o, 5§, and { A in=l, .., 14 )
1. n+ 1.
2. max <« {,.

X « &,

LA

4. Evaluate g(hn[x) using (3.1).
5. If max < g(ln[x] go to 8.

6. max + g(hn]x].

7. &t(An) “« X.

8., x + x+#§ ; if x ¢ 52 go to 4.
9, n « n+l; if n < 14 go to 2,

10. Deliver { At(A ):n=1,...,14 }.
+ The value of § determines grid size. We use § = .05 weeks.

Algorithm RT

Given: {At(ln]:n=1,...,l4}, i, n.., J. {Rijkzlgkgnij:lgiji}.

ij? 71?
1. j « 1.
2. k<« 1,
3. to(i,i,k) < t(i,j) - AE(zijk).
4, k « k+1; if kgnij go to 3.

5. § « j+1; if ngi go to 2.

6. Return {to(i,j,k)ilsken ;lejed;}
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Algorithm ST1

. “r %t T1 ~1 ~1 ~ 1 ~ 1
. F 7
Given: Py 950 Pgyo (Ef ...,A154), (var Ty se-ssvar 154).

A

1. Call COV given: fD;, og, p;N’ 16, (var T%,...,var 124)} return I.
Z. Call LTM given L return C.

3. For i=1,...,54 sample Z, from N(0,1).

4, 1 « 1.
1 i

5. T:; <« E + C.. Z
i T j=1 ij 3
l

6. Ty * L_T _J

7. If Ti < 0 go to 3.

8, 1 <« i+1. TIf i < 54 go to 5.

1 1
9. Return (Tl,...,T54).

Algorithm SN1

Given: pénN,pénN, 0N (E(1nNp), ..., E(InNg,)), (var(1nNy), ... ,var (1nNg,)) .

1. Call COV given (pan’ 1nN’ 1““,16 {var(lnw Y,...,var(1nNg,))
Ps PsN 54
return Z.
2. Call LTM given I return C.

3. For i=1,...,54 sample Zi from N(@,1).

S ij%3-

6. If Ni < 0 go to 3.

7. i<« i+l. If i < 54 go to 5.
8. For i=l,...,54;Ni “~ exp(Ni).

9. Return (Nl,...,N54).
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Algorithm STZ

"N S

. 1 1 ~ - :
Given: (Tl,...,T54], (pl,...,p54],{pm,pm:m=1,..

1. For i=1,...,54 sample U, from U{0,1).
2., 1« 1.
3. If Ui>pi go to 10,

4, Sample W from U(0,1).

5. 3 « 0.
6. 3 <+« j+l.
i oA
7. Ifi <15 and W > L p_ then go to 6.
m=1
1 ~g
§. If i > 15 and W » I Poy then go to 6.
m=1
9. T; « TF o+ mel,
1 1

10, i <« i+1. If i < 54 go to 3.

2 2
11. Return (11,...,154].

Algorithm SN2

. ] Al Al
Given: (Nl,...,N54J, (Pys---sPcy).

1. 1 « 1,

2. Sample Z from N(0,1).

1 ~1, ., ~1 1
3.0 Ny« Nyopyt ‘\/Nipi(l-Pi)-
4. If N} < 0 then go to Z.

2 1
5. NI« N. - N7,
1 1 1

6. If Ni <0 then go to 2.

7. i+« i+ 1, Ifi < 54 go to 2.

1 1 2 2
8. Return [Nl,...,N54) and (Nl""’N54)'

., 7.
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ALGORITHM SA

. i k
Given: {(TI,....,qu): (N1,~~-, Nsu) . k=1,2} , CVI...,V

10.
11,
12.
13.
14,
15.
16,
17.
18.
19.
20,
21,

+ For demonstrative purposes, in the example in Section 5.3

i

k.21 2 . 5= _
and {ai . k=1,2 ; i=1,..., 54}, P,

< 1.

k « 1.

k. k

X(i,k) « exp {-ai}.

k « k+¢1. 1If k=2 go to 3.

i

i

« i+1. If i<55 go to 2.

« 1,

- 1.

1(.]) « 0.

j o« j+i. If j§1;+l go to 9,
e 71

n Ti+1.

k « 1.

Sample Z, and Z, from a standard normal distribution.

p « (1-X(1,%))(1-p,).
q <« 1-p.
k . K
Ri(n) + Ai(n) p ZT Ai(n)pq+Ri(n).
ak(ns1) < ak(n) X(i,k)+22“[A§(n) X(i,%) (1-X(i,k)).

k « k+1. TIf k<2 go to 13.

n <« n+l, If n<32 go to 12.

i« i*l. If i<54 go to 11.

Return {(Rl(n),...,R54(n)) : n=1,...,52 } and
((AKM), .. AK () + k=1,2) n=1,...,52 }.
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nursery volume is assumed equal at each sampling site i, with

total nursery volume equal to 100000, hence Vi=1851.85 for i=1,
..,54. Total nursery volume is chosen so that the simulated

mean commercial catch biomass agrees in order of magnitude with

observed commercial catch biomass.

Algorithm COV

Given: Pys P31 Pgs k, and Cvl""’VSA)'

1. 1+ 1.
2t Oii '(_Vio
3. + 1i+1,
1, P < QS'

5. Ifi>%and j » k then ¢ « Py
6. If i <k and j < k then p + Py
7. o4 TP \fv;v;‘

935 ¢ oji'

9. 3 <« j+l. If j < 54 go to 4.
10. 1 « i+1. TIf i < 54 go to 2.

11. Return ZE{cij : i=1,...,54; j=1,...,54}.

Algorithm LTM

Given: EE{Gij : i=1,...,54; j=1,...,54}.

1. a +VEI1'

2. For i=1,...,54; Cil « Gilfa.

3. 1+ 2.
i-1

4. C.. < (0., - ¢ c2/?

ii ii 4713

j=1

5. If i=54 then return QE{Cij :oi=1,...,54; 3=1,.,..,54},

6. 1 + i+1.

7 )1

. For j=2,...,i-1; C.. «(v., - ., C. Caa
j i Ci5 <oy §=1 Ci1 €51)/C55

8. Go to 4.
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Algorithm SNUR

Given: p(e)’, {(A?(n),...,A§4[n)} . k=1,2; n=1,...,52 }.
1. For n=1,...,52; N¥(n) <« 0; S(n) ~ 0.

2, 1+« 1.

3. n =+ ;gl).

4, Sample Xl from Bin [Ai('n), ple)}.

5. Sample XZ from Bin (Ai(n}, ple}].

6. N(n) « N(n) + X; + X,.

7. If N(n)=0 then go to 13.

8. Evaluate ESi[n) and var Si(n)/()(lﬂ(z) using (5.3).

5., Sample Z from N(0,1).

10. Y1 « ESi(n) + E\lvar Si[n}/ (Xl+ XZ)‘

1i. If Yl < (0 then go to 9.

12, 8(n) « S(n) + Y-

13. n « n+*l. If n < 52 go to 4.
14. i « i+1. If i < 54 go to 3.
15. 8(n) « §(n)/54, N(n) « N(n)/54, return.

t+For a 30 second tow with a 10 foot net p(e]=1.4288x10-7.
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